ISOMORPHIC EMBEDDINGS AND HARMONIC BEHAVIOUR OF SMOOTH OPERATORS
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ABSTRACT. LetY be aBanach space, 1 < p < oo. We give a simple criterion for embedding £, C Y, namely it suffices that the positive

cone (;’ C Y. This result is applied to the study of highly smooth operators from £,, into Y (p is not an even integer). The main result is
that every such operator has a harmonic behaviour unless £ 2 C Y forsome K € N.

In this note we establish a natural criterion for embedding of £, or c¢ into a given Banach space and apply it to smooth operators
with harmonic behaviour from £, spaces.

Let Y be a Banach space and Z a Banach space with a Schauder basis {e;}. Let us denote the positive cone of Z by
Zt={z€Z, z=> aje;, a; > 0}. Wesay that Z+ C Y if there is a basic sequence {y;} in ¥ such that

Zaiei )Z < HZaiyi v <C HZaiei 5 for any Zaiei ezt (D)

We say that C is an isomorphism constant.

Recall that the well-known summing basis {e; } of ¢ has the property that |> " a;e;|| = > a; provided that ¢; > 0, which
means that KT C ¢o. Moreover, and more surprisingly, if Y is separable, then there exists a minimal and fundamental system {y; }
in Y (which need not to be a basis in general) such that () holds for Z = £;. ([S1]], [S2]], [DJ]). In our paper we prove a result
going in the opposite direction, namely that Z+ C Y already implies Z C Y for Z = {,, 1 < p < o0, or ¢y.

This simple and somewhat unexpected criterion allows us to completely characterise Banach spaces Y, for which there exist
separating polynomial (or smooth enough) operators from £, into Y, as those for which £ 2 C Y for some integer k.

1. EMBEDDING OF THE POSITIVE CONE
Fora € R, leta™ = max{a,0} and a~ = max{—a, 0}.
Theorem 1. Let Y be a Banach space. If co+ C Y, then co C Y. Moreover, {y;} is equivalent to the canonical basis of cy.
Proof. Let > a;y; € Y. Then by the assumption
[Seon| - [ St~ L] 2| Sl + [

But, as {y;} is a basic sequence,
H > aiyi

<C max{ai‘"} + C max{q; } <2C max{|ai|}.

1 1
) > z—maX{IIaiyill} > ﬁmaX{lail}!

where K is a basis constant of {y;}.

Theorem 2. Let Y be a Banach space, 1 < p < oo. Ifﬁ;‘ CY,then{, CY.
First notice the following lemma:

Lemma 3. Let Z be a Banach space with an unconditional Schauder basis {e;}, Y be a Banach space and Z+* C Y such that
{yi} is an unconditional basic sequence. Then Z C Y (in fact {y;} is equivalent to {e;}).

Proof. There is a K; > 1 such that K1_1||Z|a,~|y,~||Y < ||Za,~y,~||Y < K1“Z|ai|y,~ny forany Y a;y; € Y anda K, > 1
such that K3 | Y laj|ei |, < |Yaiei|, < K2|Y lail ei|| , forany Y- aje; € Z. Thus KiK' Y ajei| , < [Xaiyi|y <
KICKZHZaiei ”Z forany Y a;e; € Z.

O

Proof of Theorem[2] We claim that there is an unconditional normalised block basic sequence of {y; } such that all its vectors have
non-negative coordinates with respect to {y; }. Then it is easily seen by Lemmathat this block basic sequence is equivalent to the
canonical basis of £,.

For x = Y a;y; € Y we denote xT = Za?‘yi, x~ =) a;yiandX =) a;e; € {,. Suppose that {y;} is not unconditional
and Z; C Y with isomorphism constant C. Then for any & > O there is y € span{y;} such that ||y ™| = 1 and ||y| < e. If this
was not true for some ¢ > 0, then for any x € span{y;}

Il = emax{lx I x2S+ 1x71) = Sixt +x7).

€
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On the other hand
— — - — _1,7T — _1 _
Il = It =27 < It ) = € (], + [F7,) < €27 o + 57, < eIt 44
which means that {y; } would be unconditional.
Thus we can construct a block basic sequence {v;} of {y;} such that ||v;| < %2% and || vl.+ ||1J = 1. Let {a; };lzl be a finite

sequence of non-negative real numbers not all zero. Then

n n n 1 n %
Do ajvj| = > ajllv;ll < max{a;} )y vl < 5(24,'.’) and )
Jj=1 j=1 j=1 j=1

>

n
§ :ajvj
Jj=1

n n
— ot T
= E ajv; E a;v;
j=1

Jj=1

n
Zajv,-
j=1

n
ot
Z“!”j

j=1
1
n p

_ p

C(E aj) ,

p p Jj=1

1 " ”
(g
p

v

-C

p

n
g ajvj
j=1

n
E ajvj
j=1

n —_—

Lt

Z“J”j
j=1

which implies

n
j : -
ajvj

j=1

As H? Hp = 1, we can easily see that

= (Za;?) . )
p Jj=1

For an upper estimate take f € Span(y,})* such that f (Z aj v]‘") = HZa ; vj‘-|r H We will estimate the positive part of f
on span{v;} using duality on £,. Let b; = f(y;),i € Nand M = U;-'Zl supp v; (notice that this is a finite set). Define

§ = kem by & =D kem b Vi & = Ykem bref and g7 =iy b e}, where {y}} and {¢}} are the biorthogonal
functionals to {yx } and {e } respectively. Note that f(x) = g(x) for every x € span{y;} with suppx C M. Let % + é = 1and

put y =Y rcpr (b;)7 yi. Then

N[

Z

n
.
Z“/ Uy
j=1

n —_—

.

Z“/ Uy
j=1

_ : R
1], = (Z(b;)q) _ TkewD _80) _80) oSO e s
e N A I

Using @) we have

n
E :ajvj
j=1

n

e
Z“J“j

j=1

n n % n
cot (L) = (Ler) - ()
ji=1 j=1 J=1

Letus denote M+ = [ J7_, supp v, M~ = U} supp vy, ?F M+ = Y kem+ b e and ?r My— similarly. The last inequality

together with (2)), the Holder inequality and (3) gives
— 1 n »
+ p
< Hg FM—Hq (C + E) (2%) ,
]:

%(éa}’)[l) < g*(éa;‘v{) = ng rM_Hq

which means that

) f(,éa’vj) _ f(éajv;) —f(éajv;) _

()

>

n
o
Z“] Vj

j=1

n
E ajvj
J=1

p

1
2C +1°

q

1

¥ e, = (7~ 171 [) = (0= )
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This finally allows us to estimate

St =f<Z 7)- (2 .+)<g(ga,.v;)fugﬂw”
1l (£er) <€ (- reme) (Z)

The last inequality and (@) shows that we have found a semi-normalised block basis {v+} such that €+ embeds into span{v }
with an isomorphism constant strictly less than C. Now either {v+} is an unconditional basic sequence and we are done, or we can
iterate the process to find another block basis. (Notice that in every iteration the constructed block basis is a block basis of {y;}
such that all of its vectors have non-negative coordinates with respect to the previous basis and hence with respect to {y; }.) In every

Zal vj

j=1

1
C4(2C+1)4

constant corresponding to {y; }. Therefore after finitely many steps we obtain an unconditional block basic sequence as we claimed,
otherwise the isomorphism constant would eventually drop below 1, which is impossible.

/4
iteration the isomorphism constant drops at least by the factor of (1 — ) < 1, where C is the initial isomorphism

O

Remarks. We have actually proven that £, is isomorphic to a subspace spanned by a normalised block basis with all the blocks
having their coordinates with respect to {y; } non-negative. If the embedding K; C Y is almost an isometry, we can actually show
that Span{y; } is already isomorphic to £,. This is in fact contained in the previous proof, but direct proof (see Proposition E]) gives
an optimal isomorphism constant, as we will see in Example [3

Notice further, that in the case Z = £,, 1 < p < 00, or Z = ¢y if there is an arbitrary sequence {y;} C Y (not necessarily
basic) such that (T)) holds, then Z* C Y. This can be seen as follows: Let f € (span{y;})*. Similarly as in (5) we can show that
Z(f(yi)Jr)q < +o00 and Z(f(yi)_)q < 4-00. This means that y; — 0 weakly, and thus some subsequence of {y;} is a basic
sequence (see e.g. [LT, Remark after 1.a.5]).

By closer examination of the proof we can see that it works more generally for spaces with the following property: The space Z
has an unconditional basis {e; } with unconditional basis constant K and there is a non-increasing function G : (0, +00) — (0, %)
such that for any two non-zero disjointly supported f, g € span{e’}, || f + g||* = 1 we have || f||* < G(||g[™). (This fact will
replace the inequality (6).) Then the proof gives a block basis of {e; } that is equivalent to the block basis of {y;} generated by
the same (non-negative) coefficients. (For example for £, with the canonical basis and with the canonical norm we can take
G(x) = (1 —x9)'/4. As the canonical basis in £ » 18 equivalent to any of its block bases, we obtain the conclusion of Theorem
More generally, such a function exists for example for super-reflexive spaces, but also clearly for ¢g.)

1
Proposition 4. Let Y be a Banach space, 1 < p < oo. If E;’ C Y with isomorphism constant C < 2'7 7, then {y;} is equivalent
to the canonical basis of .

Proof. By the assumption there is a basic sequence {y; } in Y such that ”;}r ||p <|x*|=<cC ||;J\r Hp for any x € span{y;}.
Let x € span{y;}. Then

_ _ _ — _1 ~
Il = It —x7 I < It + I < C T, + €7, < 275 C IS,
On the other hand, choose [ € Sgan(y, })* such that f(xT) = ||x*||. Letb; = f(yi),i € N and % + % = 1. Without loss of
—~ 1
generality we may assume that Hx+ ||p > ||x_ ||p. Similarly as in (3) we can show that (Z(bj' )‘1) ¢ < C. Further,

(Z(bj)q)ézsz,* SO

iesuppxt ||x+“p ||X+H ||X+||

Using these two estimates we obtain

Ixl = /() = fH) = fT) = fat) =D arbi = fxt) =) ar b}
== (X e 1 = 1 (1= (X @)

i€supp x— i€suppx—

I<*1, ( >eh - (b,-*)q)‘}) > |, (1= 7= 17),

i€suppxt

v

and hence

Il = (1= €= )@ Ymax ¥ . [¥7],} =275 (1= (7= D7) 7],

AsC < 25, we have (1 —(C? - 1)%) > 0 and so {y; } is equivalent to the canonical basis of £,.
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Example 5. Forany 1 < p < oo there is a space X isomorphic to co @ £, with a Schauder basis {y; }, such that K; embeds

into X onto a positive cone generated by {y;} with isomorphism constant 2%

By Theorem there is a block basis of {y; } equivalent to the canonical basis of £,,, but as X is isomorphic to co & £p, {y;} is
not equivalent to a basis of £,. This example shows that the constant in Propositionis optimal.

Proof. Let X be the completion of the space cgg equipped with the norm

)l = max fmantart, (X oz +azieal?) ).

This space has a natural basis {y;} consisting of the vectors that has the i th coordinate equal to 1 and all the others equal to 0. For
any vector x € X, the decomposition

A2i — A2i+1 azi +azi+1
x=) ajy = (Z %(yzi —y2i+1)> + (Z %(yz,- + J’2i+1))

implies that X is isomorphic to co @ €.
Forany x = Y a;y; € X, where a; > O forall i € N, we have

[x] < HZCZZU’Z:‘ + Hza2i+1yzi+1n = (Zai)

On the other hand
Il = (D (@ + azi1)?)

and therefore K;j C X with isomorphism constant 21

=
|-
S

+ (Z a§i+1)
> (3ar)”

< 217% (Zai”)

|-
|-

O

Remark. 1f the space Y is complex, Theorem|[I]holds by a trivial modification of the proof. Theorem [2]is also valid in the complex
case, but the given proof implies only that (the real) £, C Yr (i.e. the space Y considered as a real vector space). The complex
embedding requires some additional work, which we briefly sketch:

Suppose that we already have the real embedding, i.e. for any real sequence {b;} we have C; “Z bjej ||p < “Z bjyj H <

() H D bjej “ Suppose further that {y; } is not equivalent to {e; }. Then (as the upper estimate always holds, just consider the real

and imaginary parts), we can construct a block basis {w; } of {y; } such that [|w; | < ;5 and |[Re w; || = 1, where & < (1 + )
Then, for any complex sequence {a; },

HZaj Rewj” = HZReaj Rew; + ZlmajiRewj H
> HZReaj Rew; + Zlmaj Imwj” - HZImaj(i Re w; —Imwj)H
= HZReaj Rew; + Zlmaj Im wy H — ”Zilmajwj H
1
>C HZReaj Rew; + Zlmaj Imw; Hp —8(Z|aj|”)p

—¢ (Z|a,-|1’)%

N

=1 (Y [Rea; Re i, + Ima; Im; |7 )

C,
C
G

—_

C 1 N
= C_; (Z |Rea; Re w; + Ima; Imw; ”,,)p —S(Zlaﬂp)p
» 1
> % (ZH}Reaj Rew; +iIma; Rew;| — [Ima; (Imw; —i Rew;)]||” )p . (Z|aj|p>p
2
C 1 L
& st ) e (r)

1 1 1
» P ? Cl
Sl |1 =55]")" e (Sha) 2 (Sha)” (G0 -0 -e).
2. HARMONIC BEHAVIOUR OF SMOOTH OPERATORS

First let us fix some notation. By C"(By, Y), 1 < n < oo we denote the space of all n-times continuously Fréchet differentiable
operators from some neighbourhood of By into Y. We say that T € C™*(Bx,Y) Cc C"(By,Y) if T™(x) is uniformly
continuous and T € C™%(Bx,Y) C C™*(By,Y) if T™(x) is a-Holder.

Definition. Let X, Y be Banach spaces. We say that an operator T : Bx — Y has a harmonic behaviour if T(Bx) C T(Sx). We
say that T is separating if inSf IT(x)—T(O)| > 0.
XEdY
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The close relation of these two notions is exposed in Lemma 8] In some sense, a very smooth separating operator is an analogue
of a linear embedding. (This claim is justified by Theorem[9})

Bonic and Frampton in [BF] showed that if ¥ admits a C*®-smooth bump but X does not, then every C*®-smooth operator
T: By — Y has a harmonic behaviour. Some variants of this result were also presented in [DGZ, chapter III] and [BLI ch. 10], as
they are related to smooth uniform homeomorphisms between Banach spaces.

Recently, Deville and Matheron in [DM] showed that if ¥ has a non-trivial cotype but X has not, then every C '+ -smooth
operator T: By — Y has a harmonic behaviour. It is clear that if X admits a C*®-smooth bump, then there exists for every
Banach space ¥ a C**-smooth operator T: By — Y that has not a harmonic behaviour (as R C ¥). In our note we investigate
fora given X = {, and 1 > o > p — [p] the structural conditions on ¥ which imply that every 7" € C [Pl¢(By,Y) has a
harmonic behaviour. (Recall that £, has a C [P1.P=P]_smooth bump, see [DGZ].) In particular we show that every such operator
has a harmonic behaviour unless £ 2 C Y for some integer K < [p]. It should be noted in this connection that by [B]] and [H] (see
also [BL]), for every £, and separable Y there exists an abundance of even polynomial operators from By, into Y such that for
example T'(By,) = By.

The techniques used in this section have their origin in the classical work of Kurzweil ([K]), Bonic and Frampton ([BE]) and
Deville ([D]), and are presented also in the book [DGZ]].

Taylor’s theorem provides a connection between smooth operators with a harmonic behaviour and separating polynomials on
£, (as we will see in Lemma , so in the next we investigate the behaviour of separating polynomials.

Recall that k-homogeneous polynomials P: X — Y (X and Y are Banach spaces) are defined as P(x) = M(x, ..., x), where
M : X — Y is a continuous symmetric k-linear operator. We denote the set of all k-homogeneous polynomials from X into Y by
Pr (X, Y). Recall that a homogeneous polynomial P is separating if 1enSf | P(x)| > 0.

xeSx

Lemma 6. Let X be a Banach space with a normalised perfectly homogeneous Schauder basis {e;} (i.e. {e;} is equivalent to
any of its normalised block bases. By the result of Zippin [Z)] it means that X is isomorphic to co or £, 1 < p < 00). Let Y be a
Banach space and K € N. Suppose that there is no separating polynomial in Py (X,Y) forany 1 <k < K. Let P € Px(X,Y)
and ¢ > 0. Then we can find a normalised block basis {z;} of {e;} such that if |>_a;z;|| < 1, then

HP(ZaiZi) - ZQ,KP(Zi)

If moreover each polynomial in Pk (X,Y) is non-separating, then we can find a normalised block basis {u;} of {z;} such that
sup{||P(x)|| ;X € Bm{ui}} < e

&
< —.
om

Proof. Let A be the basis constant of {e; }. We prove the lemma by induction on K.

In the case K = 1 pick some bounded linear operator P: X — Y and ¢ > 0. The “diagonalisation” is trivial (we put z; = ;).
Assume there is no separating bounded linear operator P: X — Y. Then P is not separating and we can choose a finitely
supported vector vy € Sy for which || P(u1)| < %ﬁ As span{e; };>p is isomorphic to X and so P [spange;},-, 1S not separating,
we can inductively construct a normalised block basis {u; } of {e;} such that || P (u;)| < z%ﬁ If | > aju;| <1, then

(o)

Now suppose that the assertion holds for K — 1 and let ¢ > 0 and M be a symmetric K-linear operator such that P(x) =
M(x,...,x).Put D = K!(24)?>K and z; = e;.
The mapping x — M(z1,...,21, x) is (by the assumption) a non-separating linear operator on span{e; }, so by the induction hy-

-1
pothesis we can find a normalised block basis {v;'} of {e; } for which sup{||M(Z1, o znLX)|s x e B! }} < 2%%(2';(151 2)

The mapping x — M(z1,...,21,x,x) is (by the assumption) a non-separating 2-homogeneous polynomial on span{vil},
so by the induction hypothesis we can find a normalised block basis {v?} of {v}} for which sup {|M(z;.....z1,x,x)|:

L£(2+K—2
24 D\ K-1

<Y @l [Pl <24 ) [P < e

i=1 i=1

)_l and so on until we find a normalised block basis {viK_l} of {viK_2} for which we have

1 _
sup{||M(zl,x,...,x)||; x €B Kfl}} < 2%%(241;1512) .Putz, = v&1,

span{v;
The mapping x — M(z1,...,21,X) is a non-separating linear operator on span{viK ~11, so again by the induction hypothesis

we can find a normalised block basis {wil’l} of {viK_l} for which sup{||M(zl, s ZLX)| x e Bi{w},l}} < £ (3+K_2)_1.

X € Bspﬁ{v?}} <

Span 25D\ K-1
The mapping x — M(z1,...,21, 22, X) is a non-separating linear operator on span{wil’l}, so we can find a normalised block basis

{wil’z} of{wil’l}forwhich sup{|IM(z1,....21.22.%)||; x € B__ .1,2}} < 2%%(3J’I;IEI2)71.Furtherwe find a normalised block

span{w
: 1,3 1,2 : : 1 e (3+K-2\"1
basis {w; "} of {w;*} for which sup{|M(z1.....21,22.22.%)||; x € Bm{wlj}} <5550C%0)
Ky 1.K—1

i
i

and so on until we can

. K—2n"1
} for which sup{||M(z2....,22.X)||; x € Bm{w;.K}} < 2%%(3}_12) .

The mapping x — M(z1,...,21,X,Xx) is a non-separating 2-homogeneous polynomial on span{wil’K}, so we can find

N |
BW{W,-Z’I}} < 2%%(3"'1_(1512) . The

mapping x > M(Z1,....21.22, X, X) is a non-separating 2-homogeneous polynomial on span{w?'}, so we can find a normalised

choose a normalised block basis {wil’ of {w

a normalised block basis {wiz’l} of {wil’K} for which sup{||M(zl s 2L X, X)) x €
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block basis {wiz,z} of {wiz’l} for which sup{||M(zl, e 21,22, %) x € Bw{wz 2}} < 215 b (321{12) . Further we find
1 s (3+K-2\"1

a normalised block basis {wi2’3} of {wl.z’z} for which sup{||M(zl, e Z21,22:22, %, %) x € Bw{wz 3}} < 2—55( o )

and we continue further until we choose a normalised block basis {wiz’K_l} of {wiZ’K_z} for which sup{||M(12, 22, X, 0|

1 ¢ (3+K—2)_1.

€B__, 2k- 1}}<2—55 X1

span{w;
Similarly we construct successive block bases until we ﬁnd a normalised block basis {wiK _1’2} of {wiK _1’1} for which

. 1 & (3+K-2 K—1,2
sup{[|M(z2,x,....x)||; x € quan{w 2—5%( P ) .Putzz = w; .

We continue inductively in the same spirit. In the nth step, in order to define z,, we consider all the (

K- 12}} <
"41'(151—2) — 1 operators
X M(zjl,...,zjkfl,&;f),where J1 << jk1 <n—1,1 <1 < K, so that sup{”M(zjl,...,zjkfl,x,...,x)H;
1
1 . .
X € Bgmtw;}} < 3= 5 (" *K72)" for a corresponding block basis {w; }.
Clearly, {z;} is a normalised block basis of {e; } and if ||>_a;z;| < 1, then

|P(Xaa)- Y afren

<KUY lajajel IMGzy 2ol £ K1CAK DT IM(z 20l

m<j1<-<jk m<ji<-<jk

J1<JK J1<JK
> 1 +Kk—2\

! K - &n -

<K'(2A) Z ) Z 2n+2D< K—1 )
n=m+1 m<jj<-<jg=n
J1<JK

-1
Z n+K-2 1 e <i
- (ZA)K on+2 K—1 T oom+2 (2A)K om’

n=m+1 1<j1<-<jx=n

In the case that all K-homogeneous polynomials are non-separating, we can (similarly as for K = 1) find a normalised

block basis {u } of {z;} such that || P(u;)|| < 2l+1 (2A)'< Let u; = Zf o b;jz;. Then (as the vector u; is normalised)
HP(M ) — z bKP(z])H o xS 3 - Thus, if [ g | < 1, we have

s} [ers}
[P(Zem)-
i=1 i=1

) Bi
<|P(Za z ) = Lol Y of r
i=1 j=a;

i=1 =

o0
£ K
<Z+;|ai|

(o)

Theorem 7. Let Y be a Banach space, 1 < p < oo, K € N.

Suppose that all polynomials in P (L,,Y ) are non-separating for all 1 < k < K. If K is odd and K < p, or if K is even and
K < p, then there is a separating P € Pg({,.Y) if and only ifﬁ% cY.

There is a separating homogeneous polynomial P: co — Y if and only if co C Y if and only if there is a separating
homogeneous polynomial P € Pg(co,Y) for every K € N.

KP(u ) — Za Z bKP(z))

i=1

Bi
P(u)— Y bEP(z))

Jj=a;

)

and so

=

P(i;ilaiui) Za

+Z|al| 1P (i) < e.

i=1

Proof. First we prove the £, case.

The “if” part: Clearly, P: £, — ¢ 2 defined as P(}_aje;) =Y aiK e; is a separating K-homogeneous polynomial. Hence if
T is an isomorphism of £ z into Y, then 7" o P is a corresponding separating K-homogeneous polynomial.

The “only if” part: Put & = infg, [ P(x)| > 0. By Lemmalf]we can construct an approprlate ‘e-diagonal” normalised block
basis {z;}. Put y; = P(z;). If K is odd, then for any sequence {a; } satisfying >, |a;| % = 1 we have

S| (S8 ] <[ $t) 3 2vm S

i=1 i=1 i=1

8 &
—=|P =
+2=1PI+3
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On the other hand,

oo
Zaiyi

i=1

K

>

= —_—_—_ = - - =

€
2 2 2

i(al%)KP(zi)

i=1

0o e
P(Lata)| 5=

i=1

O]
E al z;
i=1

This implies that span{y; } C Y is a subspace isomorphic to ¢ Z-

If K is even, a; = (ai1 / K)K only if @; > 0 and therefore we obtain merely Zz C Y. (In view of the second remark after

Theorem 2] we do not need {y; } to be a basic sequence.) Now Theorem [2] finishes the proof for K even.
For ¢y, we start by considering the separating polynomial of the smallest degree, and analogously as above we conclude that
co C Y. Then we use the fact that P : ¢o — c¢ defined as P(D>_a;e;) = Y aiK e; is a separating K-homogeneous polynomial.
O

Theoremimplies the well-known fact that there is no separating P € £, ({,,R) for 1 <k < p < oo (otherwise £,/ C R
for some k < p) and there is no separating P € £,({,,R) for p odd integer. If p is an even integer, then P(x) = |x||” is a
separating p-homogeneous polynomial and so the statement of the Theorem [7]does not hold for K = p.

Notice that C**(By,Y) Cc C" b1(Bx,Y) and £ (X,Y) C C™'(Bx.,Y) forany k,n € N.

Lemma 8. Let Y be a Banach space, 1 < p < co. Letn € N and o € (0, 1] be such thatn +a > p. AllT € C"*(By,,Y)
have a harmonic behaviour if and only if there is no separating P € Px({p,Y) forall1 <k <n. AllT € Cp’+(ng, Y),peN,
have a harmonic behaviour if and only if there is no separating P € Px({,,Y) forall1 <k < p.

Proof. Clearly, a separating polynomial has not a harmonic behaviour. Conversely, let an operator 7 € C™%(By,,, Y') have not a
harmonic behaviour. Pick a finitely supported y € By, \ S¢, such that & = iréf IT(x) — T(y)|| > 0. Find N € N such that
RAShY)

n+ao n+ao
%(1 —IyI>) ?» N'Tr < £. By Taylor’s theorem, for any x, x + & € By, !

n n+a
T4 W) =) = 3 ETO0) + R, where [Ry (1)) < 1)
k=1 "

(7

n!

(We use an abbreviation T® (x)(h) = T® (x)(h,...,h), which is a k-homogeneous polynomial in A.) Suppose that all
polynomials in $ (¢,, Y) forall 1 < k < n are non-separating. By Lemma|§lwe can find normalised block bases {ufC } of {e;}
such that span{uf.‘} C span{uf‘_l} and sup{”T(k) »M|; h e Bi{ui}'}} < %nk_I:/ for 1 < k < n. Thus we can pick a finitely

span

supported 1y € £, such that max supp y < minsupphy, N |h1]|? = 1— |y]|” and & |[T® (y)(h)| < £-% forall 1 <k <n.

Similarly for 1 < j < N we choose finitely supported /; € £, such that max supphj—; < minsupph;, N|hj|? =1—|y|?
- p .
and % HT(k)(y + le=11 h,-)(h,-)” < %ﬁ forall 1 <k < n. Then Hy + Z,N=1 hill =yl + vazl l7:|” = 1 and (7)) gives

N N j j—1
HT(H;hi) o) =% T(y+2hi) _T(”;h")H
1= Jj= 1= =
N (o j—1 j—1
-y (Z = T<k>(y n Zhi)(hj) T HRn(y n Zh,-)(hj) D
j=1 \k=1 " i=1 i=1

n+o
<£+£(—1—||y||”) ! <e,
2 n! N
which is a contradiction.
The proof for C 2T is analogous.

O

Let Y be any Banach space, 0 # y € Y. We put T'(x) = || x|| I’,’ ¥, x € {p, which is an operator without a harmonic behaviour
from By, into Y. If p is an even integer, then T € P, (£p, Y). If p is not an even integer and we let 1 be the largest integer strictly
smaller than p, then T € C""P7" (B, b Y ). Therefore if we want all sufficiently smooth operators to have a harmonic behaviour,
we need to rule out p even integer and consider smoothness higher than C?1-7~[P1 By putting together Lemma and Theorem
we immediately obtain

Theorem 9. Let Y be a Banach space, 1 < p < oo, p is not an even integer. Let € = CP1* (Bg,,Y) for some 1 > a > p—|[p]
if p is not an integer, or € = Cp’+(ng, Y) if p is an odd integer. Then either all operators in € have a harmonic behaviour or
€£ C Y forsome 1l <k <|[p].
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