ISOMORPHIC EMBEDDINGS AND HARMONIC BEHAVIOUR OF SMOOTH OPERATORS

PETR HÁJEK AND MICHAL JOHANIS

Abstract

Let Y be a Banach space, $1<p<\infty$. We give a simple criterion for embedding $\ell_{p} \subset Y$, namely it suffices that the positive cone $\ell_{p}^{+} \subset Y$. This result is applied to the study of highly smooth operators from ℓ_{p} into Y (p is not an even integer). The main result is that every such operator has a harmonic behaviour unless $\ell_{\frac{p}{K}} \subset Y$ for some $K \in \mathbb{N}$.

In this note we establish a natural criterion for embedding of ℓ_{p} or c_{0} into a given Banach space and apply it to smooth operators with harmonic behaviour from ℓ_{p} spaces.

Let Y be a Banach space and Z a Banach space with a Schauder basis $\left\{e_{i}\right\}$. Let us denote the positive cone of Z by $Z^{+}=\left\{z \in Z ; z=\sum a_{i} e_{i}, a_{i} \geq 0\right\}$. We say that $Z^{+} \subset Y$ if there is a basic sequence $\left\{y_{i}\right\}$ in Y such that

$$
\begin{equation*}
\left\|\sum a_{i} e_{i}\right\|_{Z} \leq\left\|\sum a_{i} y_{i}\right\|_{Y} \leq C\left\|\sum a_{i} e_{i}\right\|_{Z} \text { for any } \sum a_{i} e_{i} \in Z^{+} . \tag{1}
\end{equation*}
$$

We say that C is an isomorphism constant.
Recall that the well-known summing basis $\left\{e_{i}\right\}$ of c_{0} has the property that $\left\|\sum a_{i} e_{i}\right\|=\sum a_{i}$ provided that $a_{i} \geq 0$, which means that $\ell_{1}^{+} \subset c_{0}$. Moreover, and more surprisingly, if Y is separable, then there exists a minimal and fundamental system $\left\{y_{i}\right\}$ in Y (which need not to be a basis in general) such that (1] holds for $Z=\ell_{1}$. ([S1], [S2], [DJ]). In our paper we prove a result going in the opposite direction, namely that $Z^{+} \subset Y$ already implies $Z \subset Y$ for $Z=\ell_{p}, 1<p<\infty$, or c_{0}.

This simple and somewhat unexpected criterion allows us to completely characterise Banach spaces Y, for which there exist separating polynomial (or smooth enough) operators from ℓ_{p} into Y, as those for which $\ell_{\frac{p}{k}} \subset Y$ for some integer k.

1. Embedding of the Positive Cone

For $a \in \mathbb{R}$, let $a^{+}=\max \{a, 0\}$ and $a^{-}=\max \{-a, 0\}$.
Theorem 1. Let Y be a Banach space. If $c_{0}^{+} \subset Y$, then $c_{0} \subset Y$. Moreover, $\left\{y_{i}\right\}$ is equivalent to the canonical basis of c_{0}.
Proof. Let $\sum a_{i} y_{i} \in Y$. Then by the assumption

$$
\left\|\sum a_{i} y_{i}\right\|=\left\|\sum a_{i}^{+} y_{i}-\sum a_{i}^{-} y_{i}\right\| \leq\left\|\sum a_{i}^{+} y_{i}\right\|+\left\|\sum a_{i}^{-} y_{i}\right\| \leq C \max \left\{a_{i}^{+}\right\}+C \max \left\{a_{i}^{-}\right\} \leq 2 C \max \left\{\left|a_{i}\right|\right\} .
$$

But, as $\left\{y_{i}\right\}$ is a basic sequence,

$$
\left\|\sum a_{i} y_{i}\right\| \geq \frac{1}{2 K} \max \left\{\left\|a_{i} y_{i}\right\|\right\} \geq \frac{1}{2 K} \max \left\{\left|a_{i}\right|\right\}
$$

where K is a basis constant of $\left\{y_{i}\right\}$.

Theorem 2. Let Y be a Banach space, $1<p<\infty$. If $\ell_{p}^{+} \subset Y$, then $\ell_{p} \subset Y$.
First notice the following lemma:
Lemma 3. Let Z be a Banach space with an unconditional Schauder basis $\left\{e_{i}\right\}, Y$ be a Banach space and $Z^{+} \subset Y$ such that $\left\{y_{i}\right\}$ is an unconditional basic sequence. Then $Z \subset Y$ (in fact $\left\{y_{i}\right\}$ is equivalent to $\left\{e_{i}\right\}$).
Proof. There is a $K_{1} \geq 1$ such that $K_{1}^{-1}\left\|\sum\left|a_{i}\right| y_{i}\right\|_{Y} \leq\left\|\sum a_{i} y_{i}\right\|_{Y} \leq K_{1}\left\|\sum\left|a_{i}\right| y_{i}\right\|_{Y}$ for any $\sum a_{i} y_{i} \in Y$ and a $K_{2} \geq 1$ such that $K_{2}^{-1}\left\|\sum\left|a_{i}\right| e_{i}\right\|_{Z} \leq\left\|\sum a_{i} e_{i}\right\|_{Z} \leq K_{2}\left\|\sum\left|a_{i}\right| e_{i}\right\|_{Z}$ for any $\sum a_{i} e_{i} \in Z$. Thus $K_{1}^{-1} K_{2}^{-1}\left\|\sum a_{i} e_{i}\right\|_{Z} \leq\left\|\sum a_{i} y_{i}\right\|_{Y} \leq$ $K_{1} C K_{2}\left\|\sum a_{i} e_{i}\right\|_{Z}$ for any $\sum a_{i} e_{i} \in Z$.

Proof of Theorem 2 We claim that there is an unconditional normalised block basic sequence of $\left\{y_{i}\right\}$ such that all its vectors have non-negative coordinates with respect to $\left\{y_{i}\right\}$. Then it is easily seen by Lemma 3 that this block basic sequence is equivalent to the canonical basis of ℓ_{p}.

For $x=\sum a_{i} y_{i} \in Y$ we denote $x^{+}=\sum a_{i}^{+} y_{i}, x^{-}=\sum a_{i}^{-} y_{i}$ and $\widehat{x}=\sum a_{i} e_{i} \in \ell_{p}$. Suppose that $\left\{y_{i}\right\}$ is not unconditional and $\ell_{p}^{+} \subset Y$ with isomorphism constant C. Then for any $\varepsilon>0$ there is $y \in \operatorname{span}\left\{y_{i}\right\}$ such that $\left\|y^{+}\right\|=1$ and $\|y\|<\varepsilon$. If this was not true for some $\varepsilon>0$, then for any $x \in \operatorname{span}\left\{y_{i}\right\}$

$$
\|x\| \geq \varepsilon \max \left\{\left\|x^{+}\right\|,\left\|x^{-}\right\|\right\} \geq \frac{\varepsilon}{2}\left(\left\|x^{+}\right\|+\left\|x^{-}\right\|\right) \geq \frac{\varepsilon}{2}\left\|x^{+}+x^{-}\right\| .
$$

Date: November 2003.
Supported by grants GAUK 277/2001, GAČR 201-01-1198, A1019205.

On the other hand

$$
\|x\|=\left\|x^{+}-x^{-}\right\| \leq\left\|x^{+}\right\|+\left\|x^{-}\right\| \leq C\left(\left\|\widehat{x^{+}}\right\|_{p}+\left\|\widehat{x^{-}}\right\|_{p}\right) \leq C 2^{1-\frac{1}{p}}\left\|\widehat{x^{+}}+\widehat{x^{-}}\right\|_{p} \leq C 2^{1-\frac{1}{p}}\left\|x^{+}+x^{-}\right\|
$$

which means that $\left\{y_{i}\right\}$ would be unconditional.
Thus we can construct a block basic sequence $\left\{v_{i}\right\}$ of $\left\{y_{i}\right\}$ such that $\left\|v_{i}\right\|<\frac{1}{2} \frac{1}{2^{i}}$ and $\left\|\widehat{v_{i}^{+}}\right\|_{p}=1$. Let $\left\{a_{j}\right\}_{j=1}^{n}$ be a finite sequence of non-negative real numbers not all zero. Then

$$
\begin{gather*}
\left\|\sum_{j=1}^{n} a_{j} v_{j}\right\| \leq \sum_{j=1}^{n} a_{j}\left\|v_{j}\right\| \leq \max \left\{a_{j}\right\} \sum_{j=1}^{n}\left\|v_{j}\right\| \leq \frac{1}{2}\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}} \text { and } \tag{2}\\
\left\|\sum_{j=1}^{n} a_{j} v_{j}\right\|=\left\|\sum_{j=1}^{n} a_{j} v_{j}^{+}-\sum_{j=1}^{n} a_{j} v_{j}^{-}\right\| \geq\left\|\sum_{j=1}^{n} a_{j} v_{j}^{-}\right\|-\left\|\sum_{j=1}^{n} a_{j} v_{j}^{+}\right\|^{2}\left\|_{j=1}^{n} a_{j} \widehat{v_{j}^{-}}\right\|_{p}-C\left\|\sum_{j=1}^{n} a_{j} \widehat{v_{j}^{+}}\right\|_{p}=\left\|\sum_{j=1}^{n} a_{j} \widehat{v_{j}^{-}}\right\|_{p}-C\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}},
\end{gather*}
$$

which implies

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} a_{j} \widehat{v_{j}^{-}}\right\|_{p} \leq\left(C+\frac{1}{2}\right)\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}} \tag{3}
\end{equation*}
$$

As $\left\|\widehat{v_{j}^{+}}\right\|_{p}=1$, we can easily see that

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} a_{j} v_{j}^{+}\right\| \geq\left\|\sum_{j=1}^{n} a_{j} \widehat{v_{j}^{+}}\right\|_{p}=\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}} \tag{4}
\end{equation*}
$$

For an upper estimate take $f \in S_{\left(\overline{\operatorname{span}}\left\{y_{i}\right\}\right)^{*}}$ such that $f\left(\sum a_{j} v_{j}^{+}\right)=\left\|\sum a_{j} v_{j}^{+}\right\|$. We will estimate the positive part of f on $\operatorname{span}\left\{v_{n}^{+}\right\}$using duality on ℓ_{p}. Let $b_{i}=f\left(y_{i}\right), i \in \mathbb{N}$ and $M=\bigcup_{j=1}^{n} \operatorname{supp} v_{j}$ (notice that this is a finite set). Define $g=\sum_{k \in M} b_{k} y_{k}^{*}, g^{+}=\sum_{k \in M} b_{k}^{+} y_{k}^{*}, \widehat{g}=\sum_{k \in M} b_{k} e_{k}^{*}$ and $\widehat{g^{+}}=\sum_{k \in M} b_{k}^{+} e_{k}^{*}$, where $\left\{y_{k}^{*}\right\}$ and $\left\{e_{k}^{*}\right\}$ are the biorthogonal functionals to $\left\{y_{k}\right\}$ and $\left\{e_{k}\right\}$ respectively. Note that $f(x)=g(x)$ for every $x \in \operatorname{span}\left\{y_{i}\right\}$ with supp $x \subset M$. Let $\frac{1}{p}+\frac{1}{q}=1$ and put $y=\sum_{k \in M}\left(b_{k}^{+}\right)^{q-1} y_{k}$. Then

$$
\begin{equation*}
\left\|\widehat{g^{+}}\right\|_{q}=\left(\sum_{k \in M}\left(b_{k}^{+}\right)^{q}\right)^{\frac{1}{q}}=\frac{\sum_{k \in M}\left(b_{k}^{+}\right)^{q}}{\left(\sum_{k \in M}\left(b_{k}^{+}\right)^{q}\right)^{\frac{1}{p}}}=\frac{g(y)}{\|\widehat{y}\|_{p}} \leq C \frac{g(y)}{\|y\|}=C \frac{f(y)}{\|y\|} \leq C\|f\|=C \tag{5}
\end{equation*}
$$

Using (4) we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} a_{j} v_{j}\right\| & \geq f\left(\sum_{j=1}^{n} a_{j} v_{j}\right)=f\left(\sum_{j=1}^{n} a_{j} v_{j}^{+}\right)-f\left(\sum_{j=1}^{n} a_{j} v_{j}^{-}\right)=\left\|\sum_{j=1}^{n} a_{j} v_{j}^{+}\right\|-g\left(\sum_{j=1}^{n} a_{j} v_{j}^{-}\right) \\
& \geq\left\|\sum_{j=1}^{n} a_{j} v_{j}^{+}\right\|-g^{+}\left(\sum_{j=1}^{n} a_{j} v_{j}^{-}\right) \geq\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}}-g^{+}\left(\sum_{j=1}^{n} a_{j} v_{j}^{-}\right)
\end{aligned}
$$

Let us denote $M^{+}=\bigcup_{j=1}^{n} \operatorname{supp} v_{j}^{+}, M^{-}=\bigcup_{j=1}^{n} \operatorname{supp} v_{j}^{-}, \widehat{g^{+}} \upharpoonright_{M^{+}}=\sum_{k \in M^{+}} b_{k}^{+} e_{k}^{*}$ and $\widehat{g^{+}} \upharpoonright_{M^{-}}$similarly. The last inequality together with (2), the Hölder inequality and (3) gives

$$
\frac{1}{2}\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}} \leq g^{+}\left(\sum_{j=1}^{n} a_{j} v_{j}^{-}\right) \leq\left\|\widehat{g^{+}} \upharpoonright_{M^{-}}\right\|_{q}\left\|\sum_{j=1}^{n} a_{j} \widehat{v_{j}^{-}}\right\|_{p} \leq\left\|\widehat{g^{+}} \upharpoonright_{M^{-}}\right\|_{q}\left(C+\frac{1}{2}\right)\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}}
$$

which means that

$$
\left\|\widehat{g}^{+} \upharpoonright_{M^{-}}\right\|_{q} \geq \frac{1}{2 C+1}
$$

If we combine this inequality with (5), we obtain

$$
\begin{equation*}
\left\|\widehat{g^{+}}{ }_{M^{+}}\right\|_{q}=\left(\left\|\widehat{g^{+}}\right\|_{q}^{q}-\left\|\widehat{g^{+}} \upharpoonright_{M^{-}}\right\|_{q}^{q}\right)^{\frac{1}{q}} \leq\left(C^{q}-\frac{1}{(2 C+1)^{q}}\right)^{\frac{1}{q}} \tag{6}
\end{equation*}
$$

This finally allows us to estimate

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} a_{j} v_{j}^{+}\right\| & =f\left(\sum_{j=1}^{n} a_{j} v_{j}^{+}\right)=g\left(\sum_{j=1}^{n} a_{j} v_{j}^{+}\right) \leq g^{+}\left(\sum_{j=1}^{n} a_{j} v_{j}^{+}\right) \leq\left\|\widehat{g^{+}} \upharpoonright_{M^{+}}\right\|_{q}\left\|\sum_{j=1}^{n} a_{j} \widehat{v_{j}^{+}}\right\|_{p} \\
& =\left\|\widehat{g^{+}} \upharpoonright_{M^{+}}\right\|_{q}\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}} \leq C\left(1-\frac{1}{C^{q}(2 C+1)^{q}}\right)^{\frac{1}{q}}\left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

The last inequality and (4) shows that we have found a semi-normalised block basis $\left\{v_{i}^{+}\right\}$such that ℓ_{p}^{+}embeds into $\overline{\operatorname{span}}\left\{v_{i}^{+}\right\}$ with an isomorphism constant strictly less than C. Now either $\left\{v_{i}^{+}\right\}$is an unconditional basic sequence and we are done, or we can iterate the process to find another block basis. (Notice that in every iteration the constructed block basis is a block basis of $\left\{y_{i}\right\}$ such that all of its vectors have non-negative coordinates with respect to the previous basis and hence with respect to $\left\{y_{i}\right\}$.) In every iteration the isomorphism constant drops at least by the factor of $\left(1-\frac{1}{C^{q}(2 C+1)^{q}}\right)^{1 / q}<1$, where C is the initial isomorphism constant corresponding to $\left\{y_{i}\right\}$. Therefore after finitely many steps we obtain an unconditional block basic sequence as we claimed, otherwise the isomorphism constant would eventually drop below 1 , which is impossible.

Remarks. We have actually proven that ℓ_{p} is isomorphic to a subspace spanned by a normalised block basis with all the blocks having their coordinates with respect to $\left\{y_{i}\right\}$ non-negative. If the embedding $\ell_{p}^{+} \subset Y$ is almost an isometry, we can actually show that $\overline{\operatorname{span}}\left\{y_{i}\right\}$ is already isomorphic to ℓ_{p}. This is in fact contained in the previous proof, but direct proof (see Proposition 4) gives an optimal isomorphism constant, as we will see in Example 5

Notice further, that in the case $Z=\ell_{p}, 1<p<\infty$, or $Z=c_{0}$ if there is an arbitrary sequence $\left\{y_{i}\right\} \subset Y$ (not necessarily basic) such that (1) holds, then $Z^{+} \subset Y$. This can be seen as follows: Let $f \in\left(\overline{\operatorname{ppan}}\left\{y_{i}\right\}\right)^{*}$. Similarly as in (5) we can show that $\sum\left(f\left(y_{i}\right)^{+}\right)^{q}<+\infty$ and $\sum\left(f\left(y_{i}\right)^{-}\right)^{q}<+\infty$. This means that $y_{i} \rightarrow 0$ weakly, and thus some subsequence of $\left\{y_{i}\right\}$ is a basic sequence (see e.g. [LT] Remark after 1.a.5]).

By closer examination of the proof we can see that it works more generally for spaces with the following property: The space Z has an unconditional basis $\left\{e_{i}\right\}$ with unconditional basis constant K and there is a non-increasing function $G:(0,+\infty) \rightarrow\left(0, \frac{1}{K}\right)$ such that for any two non-zero disjointly supported $f, g \in \operatorname{span}\left\{e_{i}^{*}\right\},\|f+g\|^{*}=1$ we have $\|f\|^{*} \leq G\left(\|g\|^{*}\right)$. (This fact will replace the inequality (6).) Then the proof gives a block basis of $\left\{e_{i}\right\}$ that is equivalent to the block basis of $\left\{y_{i}\right\}$ generated by the same (non-negative) coefficients. (For example for ℓ_{p} with the canonical basis and with the canonical norm we can take $G(x)=\left(1-x^{q}\right)^{1 / q}$. As the canonical basis in ℓ_{p} is equivalent to any of its block bases, we obtain the conclusion of Theorem 2 More generally, such a function exists for example for super-reflexive spaces, but also clearly for c_{0}.)
Proposition 4. Let Y be a Banach space, $1<p<\infty$. If $\ell_{p}^{+} \subset Y$ with isomorphism constant $C<2^{1-\frac{1}{p}}$, then $\left\{y_{i}\right\}$ is equivalent to the canonical basis of ℓ_{p}.
Proof. By the assumption there is a basic sequence $\left\{y_{i}\right\}$ in Y such that $\left\|\widehat{x^{+}}\right\|_{p} \leq\left\|x^{+}\right\| \leq C\left\|\widehat{x^{+}}\right\|_{p}$ for any $x \in \overline{\operatorname{span}}\left\{y_{i}\right\}$.
Let $x \in \overline{\operatorname{span}}\left\{y_{i}\right\}$. Then

$$
\|x\|=\left\|x^{+}-x^{-}\right\| \leq\left\|x^{+}\right\|+\left\|x^{-}\right\| \leq C\left\|\widehat{x^{+}}\right\|_{p}+C\left\|\widehat{x^{-}}\right\|_{p} \leq 2^{1-\frac{1}{p}} C\|\widehat{x}\|_{p}
$$

On the other hand, choose $f \in S_{\left(\operatorname{span}\left\{y_{i}\right\}\right)^{*}}$ such that $f\left(x^{+}\right)=\left\|x^{+}\right\|$. Let $b_{i}=f\left(y_{i}\right), i \in \mathbb{N}$ and $\frac{1}{p}+\frac{1}{q}=1$. Without loss of generality we may assume that $\left\|\widehat{x^{+}}\right\|_{p} \geq\left\|\widehat{x^{-}}\right\|_{p}$. Similarly as in (5) we can show that $\left(\sum\left(b_{i}^{+}\right)^{q}\right)^{\frac{1}{q}} \leq C$. Further,

$$
\left(\sum_{i \in \operatorname{supp} x^{+}}\left(b_{i}^{+}\right)^{q}\right)^{\frac{1}{q}} \geq \frac{\sum a_{i}^{+} b_{i}^{+}}{\left\|\widehat{x^{+}}\right\|_{p}} \geq \frac{f\left(x^{+}\right)}{\left\|\widehat{x^{+}}\right\|_{p}}=\frac{\left\|x^{+}\right\|}{\left\|\widehat{x^{+}}\right\|_{p}} \geq 1
$$

Using these two estimates we obtain

$$
\begin{aligned}
\|x\| & \geq f(x)=f\left(x^{+}\right)-f\left(x^{-}\right)=f\left(x^{+}\right)-\sum a_{i}^{-} b_{i} \geq f\left(x^{+}\right)-\sum a_{i}^{-} b_{i}^{+} \\
& \geq\left\|\widehat{x^{+}}\right\|_{p}-\left(\sum_{i \in \operatorname{supp} x^{-}}\left(b_{i}^{+}\right)^{q}\right)^{\frac{1}{q}}\left\|\widehat{x^{-}}\right\|_{p} \geq\left\|\widehat{x^{+}}\right\|_{p}\left(1-\left(\sum_{i \in \operatorname{supp} x^{-}}\left(b_{i}^{+}\right)^{q}\right)^{\frac{1}{q}}\right) \\
& \geq\left\|\widehat{x^{+}}\right\|_{p}\left(1-\left(\sum\left(b_{i}^{+}\right)^{q}-\sum_{i \in \operatorname{supp} x^{+}}\left(b_{i}^{+}\right)^{q}\right)^{\frac{1}{q}}\right) \geq\left\|\widehat{x^{+}}\right\|_{p}\left(1-\left(C^{q}-1\right)^{\frac{1}{q}}\right),
\end{aligned}
$$

and hence

$$
\|x\| \geq\left(1-\left(C^{q}-1\right)^{\frac{1}{q}}\right) \max \left\{\left\|\widehat{x^{+}}\right\|_{p},\left\|\widehat{x^{=}}\right\|_{p}\right\} \geq 2^{-\frac{1}{p}}\left(1-\left(C^{q}-1\right)^{\frac{1}{q}}\right)\|\widehat{x}\|_{p}
$$

As $C<2^{\frac{1}{q}}$, we have $\left(1-\left(C^{q}-1\right)^{\frac{1}{q}}\right)>0$ and so $\left\{y_{i}\right\}$ is equivalent to the canonical basis of ℓ_{p}.

Example 5. For any $1<p<\infty$ there is a space X isomorphic to $c_{0} \oplus \ell_{p}$ with a Schauder basis $\left\{y_{i}\right\}$, such that ℓ_{p}^{+}embeds into X onto a positive cone generated by $\left\{y_{i}\right\}$ with isomorphism constant $2^{1-\frac{1}{p}}$.

By Theorem 2 there is a block basis of $\left\{y_{i}\right\}$ equivalent to the canonical basis of ℓ_{p}, but as X is isomorphic to $c_{0} \oplus \ell_{p},\left\{y_{i}\right\}$ is not equivalent to a basis of ℓ_{p}. This example shows that the constant in Proposition 4 is optimal.

Proof. Let X be the completion of the space c_{00} equipped with the norm

$$
\left\|\left(a_{i}\right)\right\|=\max \left\{\max \left\{a_{i}\right\},\left(\sum\left|a_{2 i}+a_{2 i+1}\right|^{p}\right)^{\frac{1}{p}}\right\} .
$$

This space has a natural basis $\left\{y_{i}\right\}$ consisting of the vectors that has the i th coordinate equal to 1 and all the others equal to 0 . For any vector $x \in X$, the decomposition

$$
x=\sum a_{i} y_{i}=\left(\sum \frac{a_{2 i}-a_{2 i+1}}{2}\left(y_{2_{i}}-y_{2 i+1}\right)\right)+\left(\sum \frac{a_{2 i}+a_{2 i+1}}{2}\left(y_{2_{i}}+y_{2 i+1}\right)\right)
$$

implies that X is isomorphic to $c_{0} \oplus \ell_{p}$.
For any $x=\sum a_{i} y_{i} \in X$, where $a_{i} \geq 0$ for all $i \in \mathbb{N}$, we have

$$
\|x\| \leq\left\|\sum a_{2 i} y_{2 i}\right\|+\left\|\sum a_{2 i+1} y_{2 i+1}\right\|=\left(\sum a_{2 i}^{p}\right)^{\frac{1}{p}}+\left(\sum a_{2 i+1}^{p}\right)^{\frac{1}{p}} \leq 2^{1-\frac{1}{p}}\left(\sum a_{i}^{p}\right)^{\frac{1}{p}} .
$$

On the other hand

$$
\|x\| \geq\left(\sum\left(a_{2 i}+a_{2 i+1}\right)^{p}\right)^{\frac{1}{p}} \geq\left(\sum a_{i}^{p}\right)^{\frac{1}{p}},
$$

and therefore $\ell_{p}^{+} \subset X$ with isomorphism constant $2^{1-\frac{1}{p}}$.

Remark. If the space Y is complex, Theorem 1 holds by a trivial modification of the proof. Theorem 2 is also valid in the complex case, but the given proof implies only that (the real) $\ell_{p} \subset Y_{\mathbb{R}}$ (i.e. the space Y considered as a real vector space). The complex embedding requires some additional work, which we briefly sketch:

Suppose that we already have the real embedding, i.e. for any real sequence $\left\{b_{j}\right\}$ we have $C_{1}\left\|\sum b_{j} e_{j}\right\|_{p} \leq\left\|\sum b_{j} y_{j}\right\| \leq$ $C_{2}\left\|\sum b_{j} e_{j}\right\|_{p}$. Suppose further that $\left\{y_{j}\right\}$ is not equivalent to $\left\{e_{j}\right\}$. Then (as the upper estimate always holds, just consider the real and imaginary parts), we can construct a block basis $\left\{w_{j}\right\}$ of $\left\{y_{j}\right\}$ such that $\left\|w_{j}\right\|<\frac{\varepsilon}{2^{j}}$ and $\left\|\operatorname{Re} w_{j}\right\|=1$, where $\varepsilon<\frac{C_{1}}{C_{2}}\left(1+\frac{C_{1}}{C_{2}}\right)$. Then, for any complex sequence $\left\{a_{j}\right\}$,

$$
\begin{aligned}
\left\|\sum a_{j} \operatorname{Re} w_{j}\right\| & =\left\|\sum \operatorname{Re} a_{j} \operatorname{Re} w_{j}+\sum \operatorname{Im} a_{j} i \operatorname{Re} w_{j}\right\| \\
& \geq\left\|\sum \operatorname{Re} a_{j} \operatorname{Re} w_{j}+\sum \operatorname{Im} a_{j} \operatorname{Im} w_{j}\right\|-\left\|\sum \operatorname{Im} a_{j}\left(i \operatorname{Re} w_{j}-\operatorname{Im} w_{j}\right)\right\| \\
& =\left\|\sum \operatorname{Re} a_{j} \operatorname{Re} w_{j}+\sum \operatorname{Im} a_{j} \operatorname{Im} w_{j}\right\|-\left\|\sum i \operatorname{Im} a_{j} w_{j}\right\|^{\prime} \\
& \geq C_{1}\left\|\sum \operatorname{Re} a_{j} \operatorname{Re} \widehat{w}_{j}+\sum \operatorname{Im} a_{j} \operatorname{Im} \widehat{w}_{j}\right\|_{p}-\varepsilon\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& =C_{1}\left(\sum\left\|\operatorname{Re} a_{j} \operatorname{Re} \widehat{w}_{j}+\operatorname{Im} a_{j} \operatorname{Im} \widehat{w}_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}}-\varepsilon\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& \geq \frac{C_{1}}{C_{2}}\left(\sum\left\|\operatorname{Re} a_{j} \operatorname{Re} w_{j}+\operatorname{Im} a_{j} \operatorname{Im} w_{j}\right\|^{p}\right)^{\frac{1}{p}}-\varepsilon\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& \geq \frac{C_{1}}{C_{2}}\left(\sum \mid\left\|\operatorname{Re} a_{j} \operatorname{Re} w_{j}+i \operatorname{Im} a_{j} \operatorname{Re} w_{j}\right\|-\left\|\operatorname{Im} a_{j}\left(\operatorname{Im} w_{j}-i \operatorname{Re} w_{j}\right)\right\|^{p}\right)^{\frac{1}{p}}-\varepsilon\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& \geq \frac{C_{1}}{C_{2}}\left(\sum\left|\left\|a_{j} \operatorname{Re} w_{j}\right\|-\frac{\varepsilon}{2^{j}}\right| a_{j}| |^{p}\right)^{\frac{1}{p}}-\varepsilon\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& =\frac{C_{1}}{C_{2}}\left(\sum\left|a_{j}\right|^{p}\left|1-\frac{\varepsilon}{2^{j}}\right|^{p}\right)^{\frac{1}{p}}-\varepsilon\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \geq\left(\sum\left|a_{j}\right|^{p}\right)^{\frac{1}{p}}\left(\frac{C_{1}}{C_{2}}(1-\varepsilon)-\varepsilon\right) .
\end{aligned}
$$

2. Harmonic Behaviour of Smooth Operators

First let us fix some notation. By $C^{n}\left(B_{X}, Y\right), 1 \leq n<\infty$ we denote the space of all n-times continuously Fréchet differentiable operators from some neighbourhood of B_{X} into Y. We say that $T \in C^{n,+}\left(B_{X}, Y\right) \subset C^{n}\left(B_{X}, Y\right)$ if $T^{(n)}(x)$ is uniformly continuous and $T \in C^{n, \alpha}\left(B_{X}, Y\right) \subset C^{n,+}\left(B_{X}, Y\right)$ if $T^{(n)}(x)$ is α-Hölder.
Definition. Let X, Y be Banach spaces. We say that an operator $T: B_{X} \rightarrow Y$ has a harmonic behaviour if $T\left(B_{X}\right) \subset \overline{T\left(S_{X}\right)}$. We say that T is separating if $\inf _{x \in S_{X}}\|T(x)-T(0)\|>0$.

The close relation of these two notions is exposed in Lemma 8 In some sense, a very smooth separating operator is an analogue of a linear embedding. (This claim is justified by Theorem 9)

Bonic and Frampton in $\left[\overline{\mathrm{BF}]}\right.$ showed that if Y admits a $C^{k, \alpha}$-smooth bump but X does not, then every $C^{k, \alpha}$-smooth operator $T: B_{X} \rightarrow Y$ has a harmonic behaviour. Some variants of this result were also presented in [DGZ, chapter III] and [BL] ch. 10], as they are related to smooth uniform homeomorphisms between Banach spaces.

Recently, Deville and Matheron in [DM] showed that if Y has a non-trivial cotype but X has not, then every $C^{1,+}$-smooth operator $T: B_{X} \rightarrow Y$ has a harmonic behaviour. It is clear that if X admits a $C^{k, \alpha}$-smooth bump, then there exists for every Banach space Y a $C^{k, \alpha}$-smooth operator $T: B_{X} \rightarrow Y$ that has not a harmonic behaviour (as $\mathbb{R} \subset Y$). In our note we investigate for a given $X=\ell_{p}$ and $1 \geq \alpha>p-[p]$ the structural conditions on Y which imply that every $T \in C^{[p], \alpha}\left(B_{X}, Y\right)$ has a harmonic behaviour. (Recall that ℓ_{p} has a $C^{[p], p-[p]}$-smooth bump, see [DGZ].) In particular we show that every such operator has a harmonic behaviour unless $\ell_{\frac{p}{K}} \subset Y$ for some integer $K \leq[p]$. It should be noted in this connection that by $[\bar{B}]$ and $[\bar{H}]$ (see also $[\overline{\mathrm{BL}}]$), for every ℓ_{p} and separable Y there exists an abundance of even polynomial operators from $B_{\ell_{p}}$ into Y such that for example $T\left(B_{\ell_{p}}\right)=B_{Y}$.

The techniques used in this section have their origin in the classical work of Kurzweil ($[\overline{\mathrm{K}}]$), Bonic and Frampton $([\overline{\mathrm{BF}}])$ and Deville ($[\overline{\mathrm{D}}]$), and are presented also in the book [DGZ].

Taylor's theorem provides a connection between smooth operators with a harmonic behaviour and separating polynomials on ℓ_{p} (as we will see in Lemma 88, so in the next we investigate the behaviour of separating polynomials.

Recall that k-homogeneous polynomials $P: X \rightarrow Y$ (X and Y are Banach spaces) are defined as $P(x)=M(x, \ldots, x)$, where $M: X \rightarrow Y$ is a continuous symmetric k-linear operator. We denote the set of all k-homogeneous polynomials from X into Y by $\mathcal{P}_{k}(X, Y)$. Recall that a homogeneous polynomial P is separating if $\inf _{x \in S_{X}}\|P(x)\|>0$.
Lemma 6. Let X be a Banach space with a normalised perfectly homogeneous Schauder basis $\left\{e_{i}\right\}$ (i.e. $\left\{e_{i}\right\}$ is equivalent to any of its normalised block bases. By the result of Zippin $[\bar{Z}]$ it means that X is isomorphic to c_{0} or $\left.\ell_{p}, 1 \leq p<\infty\right)$. Let Y be a Banach space and $K \in \mathbb{N}$. Suppose that there is no separating polynomial in $\mathscr{P}_{k}(X, Y)$ for any $1 \leq k<K$. Let $P \in \mathcal{P}_{K}(X, Y)$ and $\varepsilon>0$. Then we can find a normalised block basis $\left\{z_{i}\right\}$ of $\left\{e_{i}\right\}$ such that if $\left\|\sum a_{i} z_{i}\right\| \leq 1$, then

$$
\left\|P\left(\sum_{i=m}^{\infty} a_{i} z_{i}\right)-\sum_{i=m}^{\infty} a_{i}^{K} P\left(z_{i}\right)\right\|<\frac{\varepsilon}{2^{m}} .
$$

If moreover each polynomial in $\mathcal{P}_{K}(X, Y)$ is non-separating, then we can find a normalised block basis $\left\{u_{i}\right\}$ of $\left\{z_{i}\right\}$ such that $\sup \left\{\|P(x)\| ; x \in B_{\text {span }\left\{u_{i}\right\}}\right\}<\varepsilon$.
Proof. Let A be the basis constant of $\left\{e_{i}\right\}$. We prove the lemma by induction on K.
In the case $K=1$ pick some bounded linear operator $P: X \rightarrow Y$ and $\varepsilon>0$. The "diagonalisation" is trivial (we put $z_{i}=e_{i}$). Assume there is no separating bounded linear operator $\tilde{P}: X \rightarrow Y$. Then P is not separating and we can choose a finitely supported vector $u_{1} \in S_{X}$ for which $\left\|P\left(u_{1}\right)\right\|<\frac{1}{2} \frac{\varepsilon}{2 A}$. As $\overline{\operatorname{span}}\left\{e_{i}\right\}_{i>n}$ is isomorphic to X and so $P \upharpoonright_{\overline{\operatorname{span}}\left\{e_{i}\right\}_{i>n}}$ is not separating, we can inductively construct a normalised block basis $\left\{u_{i}\right\}$ of $\left\{e_{i}\right\}$ such that $\left\|P\left(u_{i}\right)\right\|<\frac{1}{2^{i}} \frac{\varepsilon}{2 A}$. If $\left\|\sum a_{i} u_{i}\right\| \leq 1$, then

$$
\left\|P\left(\sum_{i=1}^{\infty} a_{i} u_{i}\right)\right\| \leq \sum_{i=1}^{\infty}\left|a_{i}\right|\left\|P\left(u_{i}\right)\right\| \leq 2 A \sum_{i=1}^{\infty}\left\|P\left(u_{i}\right)\right\|<\varepsilon .
$$

Now suppose that the assertion holds for $K-1$ and let $\varepsilon>0$ and M be a symmetric K-linear operator such that $P(x)=$ $M(x, \ldots, x)$. Put $D=K!(2 A)^{2 K}$ and $z_{1}=e_{1}$.

The mapping $x \mapsto M\left(z_{1}, \ldots, z_{1}, x\right)$ is (by the assumption) a non-separating linear operator on $\overline{\operatorname{span}\{ }\left\{e_{i}\right\}$, so by the induction hypothesis we can find a normalised block basis $\left\{v_{i}^{1}\right\}$ of $\left\{e_{i}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, x\right)\right\| ; x \in B_{\overline{\operatorname{span}}\left\{v_{i}^{1}\right\}}\right\}<\frac{1}{2^{4}} \frac{\varepsilon}{D}\binom{2+K-2}{K-1}^{-1}$. The mapping $x \mapsto M\left(z_{1}, \ldots, z_{1}, x, x\right)$ is (by the assumption) a non-separating 2-homogeneous polynomial on $\operatorname{span}\left\{v_{i}^{1}\right\}$, so by the induction hypothesis we can find a normalised block basis $\left\{v_{i}^{2}\right\}$ of $\left\{v_{i}^{1}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, x, x\right)\right\|\right.$; $\left.x \in B_{\overline{\operatorname{span}}\left\{v_{i}^{2}\right\}}\right\}<\frac{1}{2^{4}} \frac{\varepsilon}{D}\binom{2+K-2}{K-1}^{-1}$ and so on until we find a normalised block basis $\left\{v_{i}^{K-1}\right\}$ of $\left\{v_{i}^{K-2}\right\}$ for which we have $\sup \left\{\left\|M\left(z_{1}, x, \ldots, x\right)\right\| ; x \in B_{\left.\overline{\text { span }\left\{v_{i}^{K-1}\right.}\right\}}\right\}<\frac{1}{2^{4}} \frac{\varepsilon}{D}\binom{2+K-2}{K-1}^{-1}$. Put $z_{2}=v_{2}^{K-1}$.

The mapping $x \mapsto M\left(z_{1}, \ldots, z_{1}, x\right)$ is a non-separating linear operator on $\overline{\operatorname{span}}\left\{v_{i}^{K-1}\right\}$, so again by the induction hypothesis we can find a normalised block basis $\left\{w_{i}^{1,1}\right\}$ of $\left\{v_{i}^{K-1}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, x\right)\right\| ; x \in B_{\overline{\text { span }}\left\{w_{i}^{1,1}\right.}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$. The mapping $x \mapsto M\left(z_{1}, \ldots, z_{1}, z_{2}, x\right)$ is a non-separating linear operator on $\overline{\operatorname{span}}\left\{w_{i}^{1,1}\right\}$, so we can find a normalised block basis $\left\{w_{i}^{1,2}\right\}$ of $\left\{w_{i}^{1,1}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, z_{2}, x\right)\right\| ; x \in B_{\overline{\text { span }}\left\{w_{i}^{1,2}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$. Further we find a normalised block basis $\left\{w_{i}^{1,3}\right\}$ of $\left\{w_{i}^{1,2}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, z_{2}, z_{2}, x\right)\right\| ; x \in B_{\text {span }\left\{w_{i}^{1,3}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$ and so on until we can choose a normalised block basis $\left\{w_{i}^{1, K}\right\}$ of $\left\{w_{i}^{1, K-1}\right\}$ for which $\sup \left\{\left\|M\left(z_{2}, \ldots, z_{2}, x\right)\right\| ; x \in B_{\overline{\operatorname{span}}\left\{w_{i}^{1, K}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$.

The mapping $x \mapsto M\left(z_{1}, \ldots, z_{1}, x, x\right)$ is a non-separating 2-homogeneous polynomial on $\overline{\operatorname{span}}\left\{w_{i}^{1, K}\right\}$, so we can find a normalised block basis $\left\{w_{i}^{2,1}\right\}$ of $\left\{w_{i}^{1, K}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, x, x\right)\right\| ; x \in B_{\overline{\operatorname{span}\{ }\left\{w_{i}^{2,1}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$. The mapping $x \mapsto M\left(z_{1}, \ldots, z_{1}, z_{2}, x, x\right)$ is a non-separating 2-homogeneous polynomial on $\overline{\operatorname{span}}\left\{w^{2,1}\right\}$, so we can find a normalised
block basis $\left\{w_{i}^{2,2}\right\}$ of $\left\{w_{i}^{2,1}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, z_{2}, x, x\right)\right\| ; x \in B_{\overline{\operatorname{span}}\left\{w_{i}^{2,2}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$. Further we find a normalised block basis $\left\{w_{i}^{2,3}\right\}$ of $\left\{w_{i}^{2,2}\right\}$ for which $\sup \left\{\left\|M\left(z_{1}, \ldots, z_{1}, z_{2}, z_{2}, x, x\right)\right\| ; x \in B_{\text {span }\left\{w_{i}^{2,3}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$ and we continue further until we choose a normalised block basis $\left\{w_{i}^{2, K-1}\right\}$ of $\left\{w_{i}^{2, K-2}\right\}$ for which $\sup \left\{\left\|M\left(z_{2}, \ldots, z_{2}, x, x\right)\right\|\right.$; $\left.x \in B_{\text {span }\left\{w_{i}^{2, K-1}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$.

Similarly we construct successive block bases until we find a normalised block basis $\left\{w_{i}^{K-1,2}\right\}$ of $\left\{w_{i}^{K-1,1}\right\}$ for which $\sup \left\{\left\|M\left(z_{2}, x, \ldots, x\right)\right\| ; x \in B_{\overline{\text { span }}\left\{w_{i}^{K-1,2}\right\}}\right\}<\frac{1}{2^{5}} \frac{\varepsilon}{D}\binom{3+K-2}{K-1}^{-1}$. Put $z_{3}=w_{3}^{K-1,2}$.

We continue inductively in the same spirit. In the nth step, in order to define z_{n}, we consider all the $\binom{n+K-2}{K-1}-1$ operators $x \mapsto M(z_{j_{1}}, \ldots, z_{j_{K-l}}, \underbrace{x, \ldots, x}_{l})$, where $j_{1} \leq \cdots \leq j_{K-l} \leq n-1,1 \leq l<K$, so that $\sup \left\{\left\|M\left(z_{j_{1}}, \ldots, z_{j_{K-l}}, x, \ldots, x\right)\right\|\right.$; $\left.x \in B_{\overline{\text { spana }}\left\{w_{i}\right\}}\right\}<\frac{1}{2^{n+2}} \frac{\varepsilon}{D}\binom{n+K-2}{K-1}^{-1}$ for a corresponding block basis $\left\{w_{i}\right\}$.

Clearly, $\left\{z_{i}\right\}$ is a normalised block basis of $\left\{e_{i}\right\}$ and if $\left\|\sum a_{i} z_{i}\right\| \leq 1$, then

$$
\begin{aligned}
& \left\|P\left(\sum_{i=m}^{\infty} a_{i} z_{i}\right)-\sum_{i=m}^{\infty} a_{i}^{K} P\left(z_{i}\right)\right\| \leq K!\sum_{\substack{m \leq j_{1} \leq \cdots \leq j_{K} \\
j_{1}<j_{K}}}\left|a_{j_{1}} \cdots a_{j_{K}}\right| \cdot\left\|M\left(z_{j_{1}}, \ldots, z_{j_{K}}\right)\right\| \leq K!(2 A)^{K} \sum_{m \leq j_{1} \leq \cdots \leq j_{K}}^{j_{1}<j_{K}}<1 M\left(z_{j_{1}}, \ldots, z_{j_{K}}\right) \| \\
& <K!(2 A)^{K} \sum_{n=m+1}^{\infty} \sum_{\substack{ \\
m \leq j_{1} \leq \cdots \leq j_{K}=n \\
j_{1}<j_{K}}} \frac{1}{2^{n+2}} \frac{\varepsilon}{D}\binom{n+K-2}{K-1}^{-1} \\
& \leq \frac{\varepsilon}{(2 A)^{K}} \sum_{n=m+1}^{\infty} \frac{1}{2^{n+2}} \sum_{1 \leq j_{1} \leq \cdots \leq j_{K}=n}\binom{n+K-2}{K-1}^{-1}=\frac{1}{2^{m+2}} \frac{\varepsilon}{(2 A)^{K}}<\frac{\varepsilon}{2^{m}} .
\end{aligned}
$$

In the case that all K-homogeneous polynomials are non-separating, we can (similarly as for $K=1$) find a normalised block basis $\left\{u_{i}\right\}$ of $\left\{z_{i}\right\}$ such that $\left\|P\left(u_{i}\right)\right\|<\frac{1}{2^{i+1}} \frac{\varepsilon}{(2 A)^{K}}$. Let $u_{i}=\sum_{j=\alpha_{i}}^{\beta_{i}} b_{j} z_{j}$. Then (as the vector u_{i} is normalised) $\left\|P\left(u_{i}\right)-\sum_{j=\alpha_{i}}^{\beta_{i}} b_{j}^{K} P\left(z_{j}\right)\right\|<\frac{1}{2^{\alpha_{i}+2}} \frac{\varepsilon}{(2 A)^{K}} \leq \frac{1}{2^{i+2}} \frac{\varepsilon}{(2 A)^{K}}$. Thus, if $\left\|\sum a_{i} u_{i}\right\| \leq 1$, we have

$$
\begin{aligned}
& \left\|P\left(\sum_{i=1}^{\infty} a_{i} u_{i}\right)-\sum_{i=1}^{\infty} a_{i}^{K} P\left(u_{i}\right)\right\| \\
& \quad \leq\left\|P\left(\sum_{i=1}^{\infty} a_{i} \sum_{j=\alpha_{i}}^{\beta_{i}} b_{j} z_{j}\right)-\sum_{i=1}^{\infty} a_{i}^{K} \sum_{j=\alpha_{i}}^{\beta_{i}} b_{j}^{K} P\left(z_{j}\right)\right\|+\left\|\sum_{i=1}^{\infty} a_{i}^{K} P\left(u_{i}\right)-\sum_{i=1}^{\infty} a_{i}^{K} \sum_{j=\alpha_{i}}^{\beta_{i}} b_{j}^{K} P\left(z_{j}\right)\right\| \\
& \quad<\frac{\varepsilon}{4}+\sum_{i=1}^{\infty}\left|a_{i}\right|^{K}\left\|P\left(u_{i}\right)-\sum_{j=\alpha_{i}}^{\beta_{i}} b_{j}^{K} P\left(z_{j}\right)\right\|<\frac{\varepsilon}{2},
\end{aligned}
$$

and so

$$
\left\|P\left(\sum_{i=1}^{\infty} a_{i} u_{i}\right)\right\| \leq\left\|P\left(\sum_{i=1}^{\infty} a_{i} u_{i}\right)-\sum_{i=1}^{\infty} a_{i}^{K} P\left(u_{i}\right)\right\|+\sum_{i=1}^{\infty}\left|a_{i}\right|^{K}\left\|P\left(u_{i}\right)\right\|<\varepsilon .
$$

Theorem 7. Let Y be a Banach space, $1 \leq p<\infty, K \in \mathbb{N}$.
Suppose that all polynomials in $\mathcal{P}_{k}\left(\ell_{p}, Y\right)$ are non-separating for all $1 \leq k<K$. If K is odd and $K \leq p$, or if K is even and $K<p$, then there is a separating $P \in \mathcal{P}_{K}\left(\ell_{p}, Y\right)$ if and only if $\ell_{K}^{p} \subset Y$.

There is a separating homogeneous polynomial $P: c_{0} \rightarrow Y$ if and only if $c_{0} \subset Y$ if and only if there is a separating homogeneous polynomial $P \in \mathscr{P}_{K}\left(c_{0}, Y\right)$ for every $K \in \mathbb{N}$.

Proof. First we prove the ℓ_{p} case.
The "if" part: Clearly, $P: \ell_{p} \rightarrow \ell_{\frac{p}{K}}$ defined as $P\left(\sum a_{i} e_{i}\right)=\sum a_{i}^{K} e_{i}$ is a separating K-homogeneous polynomial. Hence if T is an isomorphism of $\ell_{\frac{p}{K}}$ into Y, then $T \circ P$ is a corresponding separating K-homogeneous polynomial.

The "only if" part: Put $\varepsilon=\inf _{S_{\ell_{p}}}\|P(x)\|>0$. By Lemma6 we can construct an appropriate " ε-diagonal" normalised block basis $\left\{z_{i}\right\}$. Put $y_{i}=P\left(z_{i}\right)$. If K is odd, then for any sequence $\left\{a_{i}\right\}$ satisfying $\sum_{i}\left|a_{i}\right|^{p}=1$ we have

$$
\left\|\sum_{i=1}^{\infty} a_{i} y_{i}\right\|=\left\|\sum_{i=1}^{\infty}\left(a_{i}^{\frac{1}{K}}\right)^{K} P\left(z_{i}\right)\right\|<\left\|P\left(\sum_{i=1}^{\infty} a_{i}^{\frac{1}{K}} z_{i}\right)\right\|+\frac{\varepsilon}{2} \leq\|P\|\left\|\sum_{i=1}^{\infty} a_{i}^{\frac{1}{K}} z_{i}\right\|^{K}+\frac{\varepsilon}{2}=\|P\|+\frac{\varepsilon}{2} .
$$

On the other hand,

$$
\left\|\sum_{i=1}^{\infty} a_{i} y_{i}\right\|=\left\|\sum_{i=1}^{\infty}\left(a_{i}^{\frac{1}{K}}\right)^{K} P\left(z_{i}\right)\right\|>\left\|P\left(\sum_{i=1}^{\infty} a_{i}^{\frac{1}{K}} z_{i}\right)\right\|-\frac{\varepsilon}{2} \geq \varepsilon\left\|\sum_{i=1}^{\infty} a_{i}^{\frac{1}{K}} z_{i}\right\|^{K}-\frac{\varepsilon}{2}=\varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2} .
$$

This implies that $\overline{\operatorname{span}}\left\{y_{i}\right\} \subset Y$ is a subspace isomorphic to $\ell_{\frac{p}{R}}$.
If K is even, $a_{i}=\left(a_{i}^{1 / K}\right)^{K}$ only if $a_{i} \geq 0$ and therefore we obtain merely $\ell_{\frac{p}{K}}^{+} \subset Y$. (In view of the second remark after Theorem 2 we do not need $\left\{y_{i}\right\}$ to be a basic sequence.) Now Theorem 2 finishes the proof for K even.

For c_{0}, we start by considering the separating polynomial of the smallest degree, and analogously as above we conclude that $c_{0} \subset Y$. Then we use the fact that $P: c_{0} \rightarrow c_{0}$ defined as $P\left(\sum a_{i} e_{i}\right)=\sum a_{i}^{K} e_{i}$ is a separating K-homogeneous polynomial.

Theorem 7 implies the well-known fact that there is no separating $P \in \mathcal{P}_{k}\left(\ell_{p}, \mathbb{R}\right)$ for $1 \leq k<p<\infty$ (otherwise $\ell_{p / k} \subset \mathbb{R}$ for some $k<p)$ and there is no separating $P \in \mathscr{P}_{p}\left(\ell_{p}, \mathbb{R}\right)$ for p odd integer. If p is an even integer, then $P(x)=\|x\|^{p}$ is a separating p-homogeneous polynomial and so the statement of the Theorem 7 does not hold for $K=p$.

Notice that $C^{n,+}\left(B_{X}, Y\right) \subset C^{n-1,1}\left(B_{X}, Y\right)$ and $\mathscr{P}_{k}(X, Y) \subset C^{n, 1}\left(B_{X}, Y\right)$ for any $k, n \in \mathbb{N}$.
Lemma 8. Let Y be a Banach space, $1 \leq p<\infty$. Let $n \in \mathbb{N}$ and $\alpha \in(0,1]$ be such that $n+\alpha>p$. All $T \in C^{n, \alpha}\left(B_{\ell_{p}}, Y\right)$ have a harmonic behaviour if and only if there is no separating $P \in \mathcal{P}_{k}\left(\ell_{p}, Y\right)$ for all $1 \leq k \leq n$. All $T \in C^{p,+}\left(B_{\ell_{p}}, Y\right), p \in \mathbb{N}$, have a harmonic behaviour if and only if there is no separating $P \in \mathscr{P}_{k}\left(\ell_{p}, Y\right)$ for all $1 \leq k \leq p$.

Proof. Clearly, a separating polynomial has not a harmonic behaviour. Conversely, let an operator $T \in C^{n, \alpha}\left(B_{\ell_{p}}, Y\right)$ have not a harmonic behaviour. Pick a finitely supported $y \in B_{\ell_{p}} \backslash S_{\ell_{p}}$ such that $\varepsilon=\inf _{x \in S_{\ell_{p}}}\|T(x)-T(y)\|>0$. Find $N \in \mathbb{N}$ such that $\frac{1}{n!}\left(1-\|y\|^{p}\right)^{\frac{n+\alpha}{p}} N^{1-\frac{n+\alpha}{p}}<\frac{\varepsilon}{2}$. By Taylor's theorem, for any $x, x+h \in B_{\ell_{p}}$,

$$
\begin{equation*}
T(x+h)-T(x)=\sum_{k=1}^{n} \frac{1}{k!} T^{(k)}(x)(h)+R_{n}(x)(h), \quad \text { where }\left\|R_{n}(x)(h)\right\| \leq \frac{\|h\|^{n+\alpha}}{n!} . \tag{7}
\end{equation*}
$$

(We use an abbreviation $T^{(k)}(x)(h)=T^{(k)}(x)(h, \ldots, h)$, which is a k-homogeneous polynomial in h.) Suppose that all polynomials in $\mathcal{P}_{k}\left(\ell_{p}, Y\right)$ for all $1 \leq k \leq n$ are non-separating. By Lemma 6 we can find normalised block bases $\left\{u_{i}^{k}\right\}$ of $\left\{e_{i}\right\}$ such that $\overline{\operatorname{span}}\left\{u_{i}^{k}\right\} \subset \overline{\operatorname{span}}\left\{u_{i}^{k-1}\right\}$ and $\sup \left\{\left\|T^{(k)}(y)(h)\right\| ; h \in B_{\overline{\operatorname{span}}\left\{u_{i}^{k}\right\}}\right\}<\frac{\varepsilon}{2} \frac{k!}{n N}$ for $1 \leq k \leq n$. Thus we can pick a finitely supported $h_{1} \in \ell_{p}$ such that max supp $y<\min \operatorname{supp} h_{1}, N\left\|h_{1}\right\|^{p}=1-\|y\|^{p}$ and $\frac{1}{k!}\left\|T^{(k)}(y)\left(h_{1}\right)\right\|<\frac{\varepsilon}{2} \frac{1}{n N}$ for all $1 \leq k \leq n$. Similarly for $1<j \leq N$ we choose finitely supported $h_{j} \in \ell_{p}$ such that max $\operatorname{supp} h_{j-1}<\min \operatorname{supp} h_{j}, N\left\|h_{j}\right\|^{p}=1-\|y\|^{p}$ and $\frac{1}{k!}\left\|T^{(k)}\left(y+\sum_{i=1}^{j-1} h_{i}\right)\left(h_{j}\right)\right\|<\frac{\varepsilon}{2} \frac{1}{n N}$ for all $1 \leq k \leq n$. Then $\left\|y+\sum_{i=1}^{N} h_{i}\right\|^{p}=\|y\|^{p}+\sum_{i=1}^{N}\left\|h_{i}\right\|^{p}=1$ and (7) gives

$$
\begin{aligned}
\left\|T\left(y+\sum_{i=1}^{N} h_{i}\right)-T(y)\right\| & \leq \sum_{j=1}^{N}\left\|T\left(y+\sum_{i=1}^{j} h_{i}\right)-T\left(y+\sum_{i=1}^{j-1} h_{i}\right)\right\| \\
& \leq \sum_{j=1}^{N}\left(\sum_{k=1}^{n} \frac{1}{k!}\left\|T^{(k)}\left(y+\sum_{i=1}^{j-1} h_{i}\right)\left(h_{j}\right)\right\|+\left\|R_{n}\left(y+\sum_{i=1}^{j-1} h_{i}\right)\left(h_{j}\right)\right\|\right) \\
& <\frac{\varepsilon}{2}+\frac{N}{n!}\left(\frac{1-\|y\|^{p}}{N}\right)^{\frac{n+\alpha}{p}}<\varepsilon,
\end{aligned}
$$

which is a contradiction.
The proof for $C^{p,+}$ is analogous.

Let Y be any Banach space, $0 \neq y \in Y$. We put $T(x)=\|x\|_{p}^{p} y, x \in \ell_{p}$, which is an operator without a harmonic behaviour from $B_{\ell_{p}}$ into Y. If p is an even integer, then $T \in \mathcal{P}_{p}\left(\ell_{p}, Y\right)$. If p is not an even integer and we let n be the largest integer strictly smaller than p, then $T \in C^{n, p-n}\left(B_{\ell_{p}}, Y\right)$. Therefore if we want all sufficiently smooth operators to have a harmonic behaviour, we need to rule out p even integer and consider smoothness higher than $C^{[p], p-[p]}$. By putting together Lemma 8 and Theorem 7 we immediately obtain
Theorem 9. Let Y be a Banach space, $1 \leq p<\infty$, p is not an even integer. Let $\mathcal{C}=C^{[p], \alpha}\left(B_{\ell_{p}}, Y\right)$ for some $1 \geq \alpha>p-[p]$ if p is not an integer, or $\smile=C^{p,+}\left(B_{\ell_{p}}, Y\right)$ if p is an odd integer. Then either all operators in \mathcal{C} have a harmonic behaviour or $\ell_{\frac{p}{k}} \subset Y$ for some $1 \leq k \leq[p]$.

References

[B] S.M. Bates, On Smooth, Nonlinear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220.
[BF] R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Mathematics and Mechanics 15 (1966), no. 5, 877-898.
[BL] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, volume I, Amer. Math. Soc. Colloquium Publications, vol. 48, 2000.
[D] R. Deville, Geometrical implications of the existence of very smooth bump functions in Banach spaces, Israel J. Math. 6 (1989), 1-22.
[DGZ] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific \& Technical, 1993.
[DJ] W.J. Davis and W.B. Johnson On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179.
[DM] R. Deville and E. Matheron, Pyramidal vectors and smooth functions on Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3601-3608.
[H] P. Hájek, A remark on S.M. Bates' theorem, Serdica Math. J. 25 (1999), 257-258.
[K] J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 213-231.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces, Springer-Verlag, 1977.
[S1] I. Singer, On biorthogonal systems and total sequences of functionals. II, Math. Ann. 201 (1973), 1-8.
[S2] I. Singer, On minimal sequences of type l_{+}and bounded biorthogonal systems in Banach spaces, Czech. Math. J. 23 (1973), 11-14.
[Z] M. Zippin, On perfectly homogeneous bases in Banach spaces, Israel J. Math. 4 (1966), 265-272.
Mathematical Institute, Czech Academy of Science, Žitná 25, 11567 Praha 1, Czech Republic
E-mail address: hajek@math.cas.cz
Department of Mathematical Analysis, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic
E-mail address: johanis@karlin.mff.cuni.cz

