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ABSTRACT. Let Y be a Banach space, 1 < p <1. We give a simple criterion for embedding `p � Y , namely it suffices that the positive
cone `Cp � Y . This result is applied to the study of highly smooth operators from `p into Y (p is not an even integer). The main result is
that every such operator has a harmonic behaviour unless ` p

K
� Y for someK 2 N.

In this note we establish a natural criterion for embedding of p̀ or c0 into a given Banach space and apply it to smooth operators
with harmonic behaviour from p̀ spaces.

Let Y be a Banach space and Z a Banach space with a Schauder basis feig. Let us denote the positive cone of Z by
ZC D f ´ 2 ZI ´ D

P
aiei ; ai � 0 g. We say that ZC � Y if there is a basic sequence fyig in Y such thatX aiei


Z
�

X aiyi


Y
� C

X aiei


Z

for any
X

aiei 2 Z
C. (1)

We say that C is an isomorphism constant.
Recall that the well-known summing basis feig of c0 has the property that k

P
aieik D

P
ai provided that ai � 0, which

means that `C1 � c0. Moreover, and more surprisingly, if Y is separable, then there exists a minimal and fundamental system fyig
in Y (which need not to be a basis in general) such that (1) holds for Z D `1. ([S1], [S2], [DJ]). In our paper we prove a result
going in the opposite direction, namely that ZC � Y already implies Z � Y for Z D p̀ , 1 < p <1, or c0.

This simple and somewhat unexpected criterion allows us to completely characterise Banach spaces Y , for which there exist
separating polynomial (or smooth enough) operators from p̀ into Y , as those for which `p

k
� Y for some integer k.

1. EMBEDDING OF THE POSITIVE CONE

For a 2 R, let aC D maxfa; 0g and a� D maxf�a; 0g.

Theorem 1. Let Y be a Banach space. If cC0 � Y , then c0 � Y . Moreover, fyig is equivalent to the canonical basis of c0.

Proof. Let
P
aiyi 2 Y . Then by the assumptionX aiyi

 D X aCi yi �
X

a�i yi

 � X aCi yi

C X a�i yi

 � C maxfaCi g C C maxfa�i g � 2C max
˚
jai j

	
:

But, as fyig is a basic sequence, X aiyi

 � 1

2K
max

˚
kaiyik

	
�

1

2K
max

˚
jai j

	
;

where K is a basis constant of fyig.
ut

Theorem 2. Let Y be a Banach space, 1 < p <1. If `Cp � Y , then p̀ � Y .

First notice the following lemma:

Lemma 3. Let Z be a Banach space with an unconditional Schauder basis feig, Y be a Banach space and ZC � Y such that
fyig is an unconditional basic sequence. Then Z � Y (in fact fyig is equivalent to feig).

Proof. There is a K1 � 1 such that K�11
P jai jyiY � P aiyi


Y
� K1

P jai jyiY for any
P
aiyi 2 Y and a K2 � 1

such thatK�12
P jai j eiZ � P aiei


Z
� K2

P jai j eiZ for any
P
aiei 2 Z. ThusK�11 K�12

P aiei

Z
�
P aiyi


Y
�

K1CK2
P aiei


Z

for any
P
aiei 2 Z.

ut

Proof of Theorem 2. We claim that there is an unconditional normalised block basic sequence of fyig such that all its vectors have
non-negative coordinates with respect to fyig. Then it is easily seen by Lemma 3 that this block basic sequence is equivalent to the
canonical basis of p̀ .

For x D
P
aiyi 2 Y we denote xC D

P
aCi yi , x

� D
P
a�i yi andbx DP aiei 2 p̀ . Suppose that fyig is not unconditional

and `Cp � Y with isomorphism constant C . Then for any " > 0 there is y 2 spanfyig such that kyCk D 1 and kyk < ". If this
was not true for some " > 0, then for any x 2 spanfyig

kxk � "max
˚
kxCk; kx�k

	
�
"

2

�
kxCk C kx�k

�
�
"

2
kxC C x�k:
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On the other hand

kxk D kxC � x�k � kxCk C kx�k � C
�cxC

p
C
cx�

p

�
� C21�

1
p

cxC Ccx�
p
� C21�

1
p kxC C x�k;

which means that fyig would be unconditional.

Thus we can construct a block basic sequence fvig of fyig such that kvik < 1
2
1

2i
and

cvCi p D 1. Let faj gnjD1 be a finite
sequence of non-negative real numbers not all zero. Then

nX
jD1

aj vj

 �
nX

jD1

aj kvj k � maxfaj g
nX

jD1

kvj k �
1

2

 
nX

jD1

a
p
j

! 1
p

and (2)


nX

jD1

aj vj

 D

nX

jD1

aj v
C

j �

nX
jD1

aj v
�
j

 �

nX

jD1

aj v
�
j

 �

nX

jD1

aj v
C

j


�


nX

jD1

ajcv�j

p

� C


nX

jD1

aj
cvCj

p

D


nX

jD1

ajcv�j

p

� C

 
nX

jD1

a
p
j

! 1
p

;

which implies 
nX

jD1

ajcv�j

p

�

�
C C

1

2

� nX
jD1

a
p
j

! 1
p

: (3)

As
cvCj p D 1, we can easily see that

nX
jD1

aj v
C

j

 �

nX

jD1

aj
cvCj

p

D

 
nX

jD1

a
p
j

! 1
p

: (4)

For an upper estimate take f 2 S.spanfyi g/� such that f
�P

aj v
C

j

�
D

P aj v
C

j

. We will estimate the positive part of f

on spanfvCn g using duality on p̀ . Let bi D f .yi /, i 2 N and M D
Sn
jD1 supp vj (notice that this is a finite set). Define

g D
P
k2M bky

�
k

, gC D
P
k2M bC

k
y�
k

,bg D P
k2M bke

�
k

and cgC D P
k2M bC

k
e�
k

, where fy�
k
g and fe�

k
g are the biorthogonal

functionals to fykg and fekg respectively. Note that f .x/ D g.x/ for every x 2 spanfyig with supp x �M . Let 1
p
C

1
q
D 1 and

put y D
P
k2M .b

C

k
/q�1yk . Then

cgC
q
D

 X
k2M

.bC
k
/q

! 1
q

D

P
k2M .b

C

k
/q�P

k2M .b
C

k
/q
� 1
p

D
g.y/

kbykp � C g.y/kyk D C f .y/kyk � C kf k D C: (5)

Using (4) we have
nX

jD1

aj vj

 � f
 

nX
jD1

aj vj

!
D f

 
nX

jD1

aj v
C

j

!
� f

 
nX

jD1

aj v
�
j

!
D


nX

jD1

aj v
C

j

 � g
 

nX
jD1

aj v
�
j

!

�


nX

jD1

aj v
C

j

 � gC
 

nX
jD1

aj v
�
j

!
�

 
nX

jD1

a
p
j

! 1
p

� gC

 
nX

jD1

aj v
�
j

!
:

Let us denoteMC D
Sn
jD1 supp vCj ,M� D

Sn
jD1 supp v�j , cgC�MC D

P
k2MC b

C

k
e�
k

and cgC�M� similarly. The last inequality
together with (2), the Hölder inequality and (3) gives

1

2

 
nX

jD1

a
p
j

! 1
p

� gC

 
nX

jD1

aj v
�
j

!
�

cgC�M�

q


nX

jD1

ajcv�j

p

�

cgC�M�

q

�
C C

1

2

� nX
jD1

a
p
j

! 1
p

;

which means that cgC�M�

q
�

1

2C C 1
:

If we combine this inequality with (5), we obtaincgC�MC

q
D

�cgCq
q
�

cgC�M�
q
q

� 1
q

�

�
C q �

1

.2C C 1/q

� 1
q

: (6)
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This finally allows us to estimate
nX

jD1

aj v
C

j

 D f
 

nX
jD1

aj v
C

j

!
D g

 
nX

jD1

aj v
C

j

!
� gC

 
nX

jD1

aj v
C

j

!
�

cgC�MC

q


nX

jD1

aj
cvCj

p

D

cgC�MC

q

 
nX

jD1

a
p
j

! 1
p

� C

�
1 �

1

C q.2C C 1/q

� 1
q

 
nX

jD1

a
p
j

! 1
p

:

The last inequality and (4) shows that we have found a semi-normalised block basis fvCi g such that `Cp embeds into spanfvCi g
with an isomorphism constant strictly less than C . Now either fvCi g is an unconditional basic sequence and we are done, or we can
iterate the process to find another block basis. (Notice that in every iteration the constructed block basis is a block basis of fyig
such that all of its vectors have non-negative coordinates with respect to the previous basis and hence with respect to fyig.) In every

iteration the isomorphism constant drops at least by the factor of
�
1 � 1

Cq.2CC1/q

�1=q
< 1, where C is the initial isomorphism

constant corresponding to fyig. Therefore after finitely many steps we obtain an unconditional block basic sequence as we claimed,
otherwise the isomorphism constant would eventually drop below 1, which is impossible.

ut

Remarks. We have actually proven that p̀ is isomorphic to a subspace spanned by a normalised block basis with all the blocks
having their coordinates with respect to fyig non-negative. If the embedding `Cp � Y is almost an isometry, we can actually show
that spanfyig is already isomorphic to p̀ . This is in fact contained in the previous proof, but direct proof (see Proposition 4) gives
an optimal isomorphism constant, as we will see in Example 5.

Notice further, that in the case Z D p̀ , 1 < p <1, or Z D c0 if there is an arbitrary sequence fyig � Y (not necessarily
basic) such that (1) holds, then ZC � Y . This can be seen as follows: Let f 2 .spanfyig/�. Similarly as in (5) we can show thatP�

f .yi /
C
�q
< C1 and

P�
f .yi /

�
�q
< C1. This means that yi ! 0 weakly, and thus some subsequence of fyig is a basic

sequence (see e.g. [LT, Remark after 1.a.5]).
By closer examination of the proof we can see that it works more generally for spaces with the following property: The space Z

has an unconditional basis feig with unconditional basis constant K and there is a non-increasing function G W .0;C1/! .0; 1
K
/

such that for any two non-zero disjointly supported f , g 2 spanfe�i g, kf C gk
�
D 1 we have kf k� � G.kgk�/. (This fact will

replace the inequality (6).) Then the proof gives a block basis of feig that is equivalent to the block basis of fyig generated by
the same (non-negative) coefficients. (For example for p̀ with the canonical basis and with the canonical norm we can take
G.x/ D .1 � xq/1=q . As the canonical basis in p̀ is equivalent to any of its block bases, we obtain the conclusion of Theorem 2.
More generally, such a function exists for example for super-reflexive spaces, but also clearly for c0.)

Proposition 4. Let Y be a Banach space, 1 < p <1. If `Cp � Y with isomorphism constant C < 21�
1
p , then fyig is equivalent

to the canonical basis of p̀ .

Proof. By the assumption there is a basic sequence fyig in Y such that
cxC

p
� kxCk � C

cxC
p

for any x 2 spanfyig.
Let x 2 spanfyig. Then

kxk D kxC � x�k � kxCk C kx�k � C
cxC

p
C C

cx�
p
� 21�

1
pC kbxkp :

On the other hand, choose f 2 S.spanfyi g/� such that f .xC/ D kxCk. Let bi D f .yi /, i 2 N and 1
p
C

1
q
D 1. Without loss of

generality we may assume that
cxC

p
�
cx�

p
. Similarly as in (5) we can show that

�P
.bCi /

q
� 1
q � C . Further,� X

i2suppxC

.bCi /
q
� 1
q

�

P
aCi b

C

icxC
p

�
f .xC/cxC

p

D
kxCkcxC

p

� 1:

Using these two estimates we obtain

kxk � f .x/ D f .xC/ � f .x�/ D f .xC/ �
X

a�i bi � f .x
C/ �

X
a�i b

C

i

�
cxC

p
�

� X
i2suppx�

.bCi /
q
� 1
q cx�

p
�
cxC

p

�
1 �

� X
i2suppx�

.bCi /
q
� 1
q

�

�
cxC

p

�
1 �

�X
.bCi /

q
�

X
i2suppxC

.bCi /
q
� 1
q

�
�
cxC

p

�
1 � .C q � 1/

1
q

�
;

and hence
kxk �

�
1 � .C q � 1/

1
q

�
max

ncxC
p
;
cx�

p

o
� 2�

1
p

�
1 � .C q � 1/

1
q

�
kbxkp :

As C < 2
1
q , we have

�
1 � .C q � 1/

1
q

�
> 0 and so fyig is equivalent to the canonical basis of p̀ .

ut
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Example 5. For any 1 < p < 1 there is a space X isomorphic to c0 ˚ p̀ with a Schauder basis fyig, such that `Cp embeds

into X onto a positive cone generated by fyig with isomorphism constant 21�
1
p .

By Theorem 2, there is a block basis of fyig equivalent to the canonical basis of p̀ , but as X is isomorphic to c0 ˚ p̀ , fyig is
not equivalent to a basis of p̀ . This example shows that the constant in Proposition 4 is optimal.

Proof. Let X be the completion of the space c00 equipped with the norm

k.ai /k D max
�

maxfaig;
�X

ja2i C a2iC1j
p
� 1
p

�
:

This space has a natural basis fyig consisting of the vectors that has the i th coordinate equal to 1 and all the others equal to 0. For
any vector x 2 X , the decomposition

x D
X

aiyi D
�X a2i � a2iC1

2
.y2i � y2iC1/

�
C

�X a2i C a2iC1

2
.y2i C y2iC1/

�
implies that X is isomorphic to c0 ˚ p̀ .

For any x D
P
aiyi 2 X , where ai � 0 for all i 2 N, we have

kxk �
X a2iy2i

C X a2iC1y2iC1

 D �X a
p
2i

� 1
p

C

�X
a
p
2iC1

� 1
p

� 21�
1
p

�X
a
p
i

� 1
p

:

On the other hand

kxk �
�X

.a2i C a2iC1/
p
� 1
p

�

�X
a
p
i

� 1
p

;

and therefore `Cp � X with isomorphism constant 21�
1
p .

ut

Remark. If the space Y is complex, Theorem 1 holds by a trivial modification of the proof. Theorem 2 is also valid in the complex
case, but the given proof implies only that (the real) p̀ � YR (i.e. the space Y considered as a real vector space). The complex
embedding requires some additional work, which we briefly sketch:

Suppose that we already have the real embedding, i.e. for any real sequence fbj g we have C1
P bj ej


p
�
P bjyj

 �
C2
P bj ej


p

. Suppose further that fyj g is not equivalent to fej g. Then (as the upper estimate always holds, just consider the real

and imaginary parts), we can construct a block basis fwj g of fyj g such that kwj k < "

2j
and kRewj k D 1, where " < C1

C2

�
1C C1

C2

�
.

Then, for any complex sequence faj g,X aj Rewj
 D XRe aj Rewj C

X
Im aj i Rewj


�

XRe aj Rewj C
X

Im aj Imwj

 � X Im aj .i Rewj � Imwj /


D

XRe aj Rewj C
X

Im aj Imwj

 � X i Im ajwj


� C1

XRe aj Rebwj CX Im aj Imbwj
p
� "

�X
jaj j

p
� 1
p

D C1

�XRe aj Rebwj C Im aj Imbwjpp� 1p � " �Xjaj jp� 1p
�
C1

C2

�XRe aj Rewj C Im aj Imwj
p� 1p � " �Xjaj jp� 1p

�
C1

C2

�Xˇ̌Re aj Rewj C i Im aj Rewj
 � Im aj .Imwj � i Rewj /

ˇ̌p� 1p � " �Xjaj jp� 1p
�
C1

C2

�X ˇ̌̌aj Rewj
 � "

2j
jaj j

ˇ̌̌p� 1p
� "

�X
jaj j

p
� 1
p

D
C1

C2

�X
jaj j

p
ˇ̌̌
1 �

"

2j

ˇ̌̌p� 1p
� "

�X
jaj j

p
� 1
p

�

�X
jaj j

p
� 1
p

�
C1

C2
.1 � "/ � "

�
:

2. HARMONIC BEHAVIOUR OF SMOOTH OPERATORS

First let us fix some notation. By C n.BX ; Y /, 1 � n <1 we denote the space of all n-times continuously Fréchet differentiable
operators from some neighbourhood of BX into Y . We say that T 2 C n;C.BX ; Y / � C n.BX ; Y / if T .n/.x/ is uniformly
continuous and T 2 C n;˛.BX ; Y / � C n;C.BX ; Y / if T .n/.x/ is ˛-Hölder.

Definition. Let X , Y be Banach spaces. We say that an operator T W BX ! Y has a harmonic behaviour if T .BX / � T .SX /. We
say that T is separating if inf

x2SX
kT .x/ � T .0/k > 0.
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The close relation of these two notions is exposed in Lemma 8. In some sense, a very smooth separating operator is an analogue
of a linear embedding. (This claim is justified by Theorem 9.)

Bonic and Frampton in [BF] showed that if Y admits a C k;˛-smooth bump but X does not, then every C k;˛-smooth operator
T W BX ! Y has a harmonic behaviour. Some variants of this result were also presented in [DGZ, chapter III] and [BL, ch. 10], as
they are related to smooth uniform homeomorphisms between Banach spaces.

Recently, Deville and Matheron in [DM] showed that if Y has a non-trivial cotype but X has not, then every C 1;C-smooth
operator T W BX ! Y has a harmonic behaviour. It is clear that if X admits a C k;˛-smooth bump, then there exists for every
Banach space Y a C k;˛-smooth operator T W BX ! Y that has not a harmonic behaviour (as R � Y ). In our note we investigate
for a given X D p̀ and 1 � ˛ > p � Œp� the structural conditions on Y which imply that every T 2 C Œp�;˛.BX ; Y / has a
harmonic behaviour. (Recall that p̀ has a C Œp�;p�Œp�-smooth bump, see [DGZ].) In particular we show that every such operator
has a harmonic behaviour unless ` p

K
� Y for some integer K � Œp�. It should be noted in this connection that by [B] and [H] (see

also [BL]), for every p̀ and separable Y there exists an abundance of even polynomial operators from B`p into Y such that for
example T .B`p / D BY .

The techniques used in this section have their origin in the classical work of Kurzweil ([K]), Bonic and Frampton ([BF]) and
Deville ([D]), and are presented also in the book [DGZ].

Taylor’s theorem provides a connection between smooth operators with a harmonic behaviour and separating polynomials on
p̀ (as we will see in Lemma 8), so in the next we investigate the behaviour of separating polynomials.

Recall that k-homogeneous polynomials P W X ! Y (X and Y are Banach spaces) are defined as P.x/ DM.x; : : : ; x/, where
M W X ! Y is a continuous symmetric k-linear operator. We denote the set of all k-homogeneous polynomials from X into Y by
Pk.X; Y /. Recall that a homogeneous polynomial P is separating if inf

x2SX
kP.x/k > 0.

Lemma 6. Let X be a Banach space with a normalised perfectly homogeneous Schauder basis feig (i.e. feig is equivalent to
any of its normalised block bases. By the result of Zippin [Z] it means that X is isomorphic to c0 or p̀ , 1 � p <1). Let Y be a
Banach space and K 2 N. Suppose that there is no separating polynomial in Pk.X; Y / for any 1 � k < K. Let P 2 PK.X; Y /

and " > 0. Then we can find a normalised block basis f´ig of feig such that if k
P
ai´ik � 1, thenP� 1X

iDm

ai´i

�
�

1X
iDm

aKi P.´i /

 < "

2m
:

If moreover each polynomial in PK.X; Y / is non-separating, then we can find a normalised block basis fuig of f´ig such that
sup

˚
kP.x/k I x 2 Bspanfui g

	
< ".

Proof. Let A be the basis constant of feig. We prove the lemma by induction on K.
In the case K D 1 pick some bounded linear operator P W X ! Y and " > 0. The “diagonalisation” is trivial (we put ´i D ei ).

Assume there is no separating bounded linear operator QP W X ! Y . Then P is not separating and we can choose a finitely
supported vector u1 2 SX for which kP.u1/k < 1

2
"
2A

. As spanfeigi>n is isomorphic to X and so P�spanfei gi>n is not separating,
we can inductively construct a normalised block basis fuig of feig such that kP.ui /k < 1

2i
"
2A

. If k
P
aiuik � 1, thenP� 1X

iD1

aiui

� � 1X
iD1

jai j kP.ui /k � 2A

1X
iD1

kP.ui /k < ":

Now suppose that the assertion holds for K � 1 and let " > 0 and M be a symmetric K-linear operator such that P.x/ D
M.x; : : : ; x/. Put D D KŠ.2A/2K and ´1 D e1.

The mapping x 7!M.´1; : : : ; ´1; x/ is (by the assumption) a non-separating linear operator on spanfeig, so by the induction hy-
pothesis we can find a normalised block basis fv1i g of feig for which sup

˚
kM.´1; : : : ; ´1; x/k I x 2 Bspanfv1

i
g

	
< 1

24
"
D

�
2CK�2
K�1

��1
.

The mapping x 7! M.´1; : : : ; ´1; x; x/ is (by the assumption) a non-separating 2-homogeneous polynomial on spanfv1i g,
so by the induction hypothesis we can find a normalised block basis fv2i g of fv1i g for which sup

˚
kM.´1; : : : ; ´1; x; x/k I

x 2 Bspanfv2
i
g

	
< 1

24
"
D

�
2CK�2
K�1

��1
and so on until we find a normalised block basis fvK�1i g of fvK�2i g for which we have

sup
˚
kM.´1; x; : : : ; x/k I x 2 BspanfvK�1

i
g

	
< 1

24
"
D

�
2CK�2
K�1

��1
. Put ´2 D vK�12 .

The mapping x 7!M.´1; : : : ; ´1; x/ is a non-separating linear operator on spanfvK�1i g, so again by the induction hypothesis
we can find a normalised block basis fw1;1i g of fvK�1i g for which sup

˚
kM.´1; : : : ; ´1; x/k I x 2 Bspanfw1;1

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
.

The mapping x 7!M.´1; : : : ; ´1; ´2; x/ is a non-separating linear operator on spanfw1;1i g, so we can find a normalised block basis

fw
1;2
i g of fw1;1i g for which sup

˚
kM.´1; : : : ; ´1; ´2; x/k I x 2 Bspanfw1;2

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
. Further we find a normalised block

basis fw1;3i g of fw1;2i g for which sup
˚
kM.´1; : : : ; ´1; ´2; ´2; x/k I x 2 Bspanfw1;3

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
and so on until we can

choose a normalised block basis fw1;Ki g of fw1;K�1i g for which sup
˚
kM.´2; : : : ; ´2; x/k I x 2 Bspanfw1;K

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
.

The mapping x 7! M.´1; : : : ; ´1; x; x/ is a non-separating 2-homogeneous polynomial on spanfw1;Ki g, so we can find

a normalised block basis fw2;1i g of fw1;Ki g for which sup
˚
kM.´1; : : : ; ´1; x; x/k I x 2 Bspanfw2;1

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
. The

mapping x 7!M.´1; : : : ; ´1; ´2; x; x/ is a non-separating 2-homogeneous polynomial on spanfw2;1g, so we can find a normalised
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block basis fw2;2i g of fw2;1i g for which sup
˚
kM.´1; : : : ; ´1; ´2; x; x/k I x 2 Bspanfw2;2

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
. Further we find

a normalised block basis fw2;3i g of fw2;2i g for which sup
˚
kM.´1; : : : ; ´1; ´2; ´2; x; x/k I x 2 Bspanfw2;3

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
and we continue further until we choose a normalised block basis fw2;K�1i g of fw2;K�2i g for which sup

˚
kM.´2; : : : ; ´2; x; x/k I

x 2 Bspanfw2;K�1
i

g

	
< 1

25
"
D

�
3CK�2
K�1

��1
.

Similarly we construct successive block bases until we find a normalised block basis fwK�1;2i g of fwK�1;1i g for which

sup
˚
kM.´2; x; : : : ; x/k I x 2 BspanfwK�1;2

i
g

	
< 1

25
"
D

�
3CK�2
K�1

��1
. Put ´3 D w

K�1;2
3 .

We continue inductively in the same spirit. In the nth step, in order to define ´n, we consider all the
�
nCK�2
K�1

�
� 1 operators

x 7! M. j́1 ; : : : ; j́K�l ; x; : : : ; x„ ƒ‚ …
l

/, where j1 � � � � � jK�l � n � 1, 1 � l < K, so that sup
˚M. j́1 ; : : : ; j́K�l ; x; : : : ; x/

 I
x 2 Bspanfwi g

	
< 1

2nC2
"
D

�
nCK�2
K�1

��1
for a corresponding block basis fwig.

Clearly, f´ig is a normalised block basis of feig and if k
P
ai´ik � 1, thenP� 1X

iDm

ai´i

�
�

1X
iDm

aKi P.´i /

 � KŠ X
m�j1�����jK

j1<jK

jaj1 � � � ajK j � kM. j́1 ; : : : ; j́K /k � KŠ.2A/
K

X
m�j1�����jK

j1<jK

kM. j́1 ; : : : ; j́K /k

< KŠ.2A/K
1X

nDmC1

X
m�j1�����jKDn

j1<jK

1

2nC2
"

D

 
nCK � 2

K � 1

!�1

�
"

.2A/K

1X
nDmC1

1

2nC2

X
1�j1�����jKDn

 
nCK � 2

K � 1

!�1
D

1

2mC2
"

.2A/K
<

"

2m
:

In the case that all K-homogeneous polynomials are non-separating, we can (similarly as for K D 1) find a normalised
block basis fuig of f´ig such that kP.ui /k < 1

2iC1
"

.2A/K
. Let ui D

Pˇi
jD˛i

bj j́ . Then (as the vector ui is normalised)P.ui / � ˇiP
jD˛i

bKj P. j́ /
 < 1

2˛iC2
"

.2A/K
�

1

2iC2
"

.2A/K
. Thus, if k

P
aiuik � 1, we have

P� 1X
iD1

aiui

�
�

1X
iD1

aKi P.ui /


�

P� 1X
iD1

ai

ˇiX
jD˛i

bj j́

�
�

1X
iD1

aKi

ˇiX
jD˛i

bKj P. j́ /

C  1X
iD1

aKi P.ui / �

1X
iD1

aKi

ˇiX
jD˛i

bKj P. j́ /


<
"

4
C

1X
iD1

jai j
K

P.ui / � ˇiX
jD˛i

bKj P. j́ /

 < "

2
;

and so P� 1X
iD1

aiui

� � P� 1X
iD1

aiui

�
�

1X
iD1

aKi P.ui /

C 1X
iD1

jai j
K
kP.ui /k < ":

ut

Theorem 7. Let Y be a Banach space, 1 � p <1, K 2 N.
Suppose that all polynomials in Pk. p̀; Y / are non-separating for all 1 � k < K. If K is odd and K � p, or if K is even and

K < p, then there is a separating P 2 PK. p̀; Y / if and only if ` p
K
� Y .

There is a separating homogeneous polynomial P W c0 ! Y if and only if c0 � Y if and only if there is a separating
homogeneous polynomial P 2 PK.c0; Y / for every K 2 N.

Proof. First we prove the p̀ case.
The “if” part: Clearly, P W p̀ ! ` p

K
defined as P.

P
aiei / D

P
aKi ei is a separating K-homogeneous polynomial. Hence if

T is an isomorphism of ` p
K

into Y , then T ı P is a corresponding separating K-homogeneous polynomial.
The “only if” part: Put " D infS`p kP.x/k > 0. By Lemma 6 we can construct an appropriate “"-diagonal” normalised block

basis f´ig. Put yi D P.´i /. If K is odd, then for any sequence faig satisfying
P
i jai j

p
K D 1 we have 1X

iD1

aiyi

 D  1X
iD1

�
a
1
K

i

�K
P.´i /

 < P� 1X
iD1

a
1
K

i ´i

�C "

2
� kP k

 1X
iD1

a
1
K

i ´i

K C "

2
D kP k C

"

2
:
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On the other hand, 1X
iD1

aiyi

 D  1X
iD1

�
a
1
K

i

�K
P.´i /

 > P� 1X
iD1

a
1
K

i ´i

� � "2 � "
 1X
iD1

a
1
K

i ´i

K � "2 D " � "2 D "

2
:

This implies that spanfyig � Y is a subspace isomorphic to ` p
K

.

If K is even, ai D .a
1=K
i /K only if ai � 0 and therefore we obtain merely `Cp

K

� Y . (In view of the second remark after

Theorem 2 we do not need fyig to be a basic sequence.) Now Theorem 2 finishes the proof for K even.
For c0, we start by considering the separating polynomial of the smallest degree, and analogously as above we conclude that

c0 � Y . Then we use the fact that P W c0 ! c0 defined as P.
P
aiei / D

P
aKi ei is a separating K-homogeneous polynomial.

ut

Theorem 7 implies the well-known fact that there is no separating P 2 Pk. p̀;R/ for 1 � k < p <1 (otherwise p̀=k � R
for some k < p) and there is no separating P 2 Pp. p̀;R/ for p odd integer. If p is an even integer, then P.x/ D kxkp is a
separating p-homogeneous polynomial and so the statement of the Theorem 7 does not hold for K D p.

Notice that C n;C.BX ; Y / � C n�1;1.BX ; Y / and Pk.X; Y / � C
n;1.BX ; Y / for any k; n 2 N.

Lemma 8. Let Y be a Banach space, 1 � p < 1. Let n 2 N and ˛ 2 .0; 1� be such that nC ˛ > p. All T 2 C n;˛.B`p ; Y /
have a harmonic behaviour if and only if there is no separating P 2 Pk. p̀; Y / for all 1 � k � n. All T 2 Cp;C.B`p ; Y /, p 2 N,
have a harmonic behaviour if and only if there is no separating P 2 Pk. p̀; Y / for all 1 � k � p.

Proof. Clearly, a separating polynomial has not a harmonic behaviour. Conversely, let an operator T 2 C n;˛.B`p ; Y / have not a
harmonic behaviour. Pick a finitely supported y 2 B`p n S`p such that " D inf

x2S`p

kT .x/ � T .y/k > 0. Find N 2 N such that
1
nŠ
.1 � kykp/

nC˛
p N 1�nC˛p < "

2
. By Taylor’s theorem, for any x; x C h 2 B`p ,

T .x C h/ � T .x/ D

nX
kD1

1

kŠ
T .k/.x/.h/CRn.x/.h/, where kRn.x/.h/k �

khknC˛

nŠ
. (7)

(We use an abbreviation T .k/.x/.h/ D T .k/.x/.h; : : : ; h/, which is a k-homogeneous polynomial in h.) Suppose that all
polynomials in Pk. p̀; Y / for all 1 � k � n are non-separating. By Lemma 6 we can find normalised block bases fuki g of feig
such that spanfuki g � spanfuk�1i g and sup

˚T .k/.y/.h/ I h 2 Bspanfuk
i
g

	
< "

2
kŠ
nN

for 1 � k � n. Thus we can pick a finitely
supported h1 2 p̀ such that max suppy < min supph1, N kh1k

p
D 1 � kykp and 1

kŠ

T .k/.y/.h1/ < "
2
1
nN

for all 1 � k � n.
Similarly for 1 < j � N we choose finitely supported hj 2 p̀ such that max supphj�1 < min supphj , N khj kp D 1 � kyk

p

and 1
kŠ

T .k/�y CPj�1
iD1 hi

�
.hj /

 < "
2
1
nN

for all 1 � k � n. Then
y CPN

iD1 hi

p D kykp CPN
iD1 khik

p
D 1 and (7) givesT�y C NX

iD1

hi

�
� T .y/

 � NX
jD1

T�y C jX
iD1

hi

�
� T

�
y C

j�1X
iD1

hi

�
�

NX
jD1

 
nX
kD1

1

kŠ

T .k/�y C j�1X
iD1

hi

�
.hj /

C Rn�y C j�1X
iD1

hi

�
.hj /


!

<
"

2
C
N

nŠ

�
1 � kykp

N

�nC˛
p

< ";

which is a contradiction.
The proof for Cp;C is analogous.

ut

Let Y be any Banach space, 0 ¤ y 2 Y . We put T .x/ D kxkpp y, x 2 p̀ , which is an operator without a harmonic behaviour
from B`p into Y . If p is an even integer, then T 2 Pp. p̀; Y /. If p is not an even integer and we let n be the largest integer strictly
smaller than p, then T 2 C n;p�n.B`p ; Y /. Therefore if we want all sufficiently smooth operators to have a harmonic behaviour,
we need to rule out p even integer and consider smoothness higher than C Œp�;p�Œp�. By putting together Lemma 8 and Theorem 7
we immediately obtain

Theorem 9. Let Y be a Banach space, 1 � p <1, p is not an even integer. Let C D C Œp�;˛.B`p ; Y / for some 1 � ˛ > p � Œp�
if p is not an integer, or C D Cp;C.B`p ; Y / if p is an odd integer. Then either all operators in C have a harmonic behaviour or
`p
k
� Y for some 1 � k � Œp�.
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