
LOCALLY FLAT BANACH SPACES

PETR HÁJEK AND MICHAL JOHANIS

ABSTRACT. Let X be a separable Banach space with a Schauder basis, admitting a bump which depends locally on finitely many
coordinates. ThenX admits also a C1-smooth bump which depends locally on finitely many coordinates. There exists an Orlicz space
admitting a C1-smooth bump which depends locally on finitely many coordinates, and which is not isomorphic to a subspace of any
C.K/,K scattered. In view of the related results this space is possibly not isomorphic to a polyhedral space.

1. INTRODUCTION

In the present paper we investigate the properties of separable Banach spaces admitting bump functions depending locally on
finitely many coordinates (LFC). The first use of the LFC notion for a function was the construction of C1-smooth and LFC
renorming of c0, due to Kuiper, which appeared in [BF]. The LFC notion was explicitly introduced and investigated in the paper
[PWZ] of Pechanec, Whitfield and Zizler. In their work the authors have proved that every Banach space admitting a LFC bump
is saturated with copies of c0, providing in some sense a converse to Kuiper’s result. Not surprisingly, it turns out that the LFC
notion is closely related to the class of polyhedral spaces, introduced by Klee [K] and thoroughly investigated by many authors
(see [JL, Chapter 15] for results and references). (We note that polyhedrality is understood in the isomorphic sense in this paper.)
Indeed, prior to [PWZ], Fonf [F1] has proved that every polyhedral Banach space is saturated with copies of c0. Later, it was
independently proved in [F2] and [Haj1] that every separable polyhedral Banach space admits an equivalent LFC norm. Using
the last result Fonf’s result is a corollary of [PWZ]. The notion of LFC has been exploited (at least implicitly) in a number of
papers, in order to obtain very smooth bump functions, norms and partitions of unity on non-separable Banach spaces, see e.g.
[To], [Ta], [DGZ1], [GPWZ], [GTWZ], [FZ], [Hay1], [Hay2], [Hay3], [S1], [S2], [Haj1], [Haj2], [Haj3], and the book [DGZ]. In
fact, it seems to be the only general approach to these problems. The reason is simple; it is relatively easy to check the (higher)
differentiability properties of functions of several variables, while for functions defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach space is polyhedral if and only if it admits a LFC
renorming (resp. C1-smooth and LFC renorming), [Haj1]. However, this smoothing up result is obtained by using the boundary
of a Banach space, rather than through some direct smoothing procedure. There is a variety of open questions, well known among
the workers in the area, concerning the existence and possible smoothing of general non-convex LFC functions. In our note we are
going to address the following ones. Suppose a Banach space X admits a LFC bump. Does X admit a C1-smooth bump (norm)?
Is the space X necessarily polyhedral?

To this end, we develop some basic theory of LFC functions on separable Banach spaces. In fact, in Section 2 we introduce
a formally more general notion of a locally flat space, and generalise the known structural results valid for spaces admitting a
(continuous) LFC bump function in this context. It is not clear to us whether the generalisation is genuine. However, locally flat
spaces include for example all spaces admitting a (not necessarily continuous) bump locally depending on finitely many linear (i.e.
not necessarily continuous) functionals. This notion offers itself for a possible purely combinatorial characterisation of locally flat
spaces. We intend to investigate in this direction in the future.

The main result of Section 3 is that a separable Banach space with a Schauder basis has a C1-smooth and LFC bump function
whenever it has a continuous LFC bump. This seems to be the first relatively general result in this direction. We establish some
additional properties of such bumps, with an eye on the future developments.

The main result of the paper, contained in Section 5, is a certain rather subtle construction of an Orlicz sequence space having a
C1-smooth and LFC bump function, which we suspect to be non-polyhedral. Such an example is of course needed to justify the
whole theory, since in the polyhedral case the smoothing up (and structural) results are well known and easier. In fact, our paper,
and in particular the example was motivated by the beautiful theory of polyhedrality for separable Banach spaces with Schauder
basis, and especially Orlicz sequence spaces, developed by Leung in [L1] and [L2]. The key result of these works is the following
theorem.

Theorem ([L2]). The following statements are equivalent for every non-degenerate Orlicz function M :

(i) There exists a constant K > 0 such that lim
t!0C

M.Kt/
M.t/

D1.

(ii) The Orlicz sequence space hM is isomorphic to a subspace of C.!!/.
(iii) The Orlicz sequence space hM is isomorphic to a subspace of C.K/ for some scattered compact K.
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All spaces satisfying (ii) are polyhedral, and Leung conjectured that conversely all polyhedral Orlicz sequence spaces fall under
this description. There is a strong evidence supporting this idea. First, Theorem 34, part of which is also in Leung’s paper, shows
that the naturally defined LFC renormings exist precisely for those spaces. Second, negating the condition in (i) we obtain the
following formula

.8K > 0/.9ftng
1
nD1; tn & 0/ lim

n!1

M.Ktn/

M.tn/
<1:

Reversing the order of the quantifiers we obtain the following stronger (less general) condition

.9ftng
1
nD1; tn & 0/.8K > 0/ lim

n!1

M.Ktn/

M.tn/
<1:

Leung proved that Orlicz sequence spaces satisfying the last condition are not polyhedral (although they may be c0 saturated).
Thus Leung’s theorem above is a near characterisation of polyhedrality for Orlicz sequence spaces, the gap lying in the exchange

of quantifiers. Our example of an Orlicz sequence space with C1-smooth and LFC bump lies strictly in between the above
conditions. Therefore, our space is either a non-polyhedral space admitting a LFC bump (we are inclined to believe this alternative),
or Leung’s polyhedral conjecture is false.

We use a standard Banach space notation. If feig is a Schauder basis of a Banach space, we denote by fe�i g its biorthogonal
functionals. Pn are the canonical projections associated with the basis feig, P �n are the operators adjoint to Pn, i.e. the canonical
projections associated with the basis fe�i g. Given a set A � N we denote by PA the projection associated with the set A, i.e.
PAx D

P
i2A e

�
i .x/ei . By Rn we denote the projections Rn D I � Pn, where I is the identity operator. For a finite set B ,

jBj denotes the number of elements of B . U.x; ı/ is an open ball centred at x with radius ı. By X# we denote an algebraic dual to
a vector space X .

We refer to [F–Z], [LT] and [JL] for background material and results.

2. LOCAL FLATNESS

In this section, we are going to generalise the well known structural results for polyhedral spaces (or spaces with a (continuous)
LFC bump), to a (at least formally) larger class of locally flat spaces. Apart from the usual effort to find the essential ingredients in
the theory, we feel that the more discrete and combinatorial notions have a better chance for finding characterisation, e.g. among
the Orlicz sequence spaces. This is crucial for finding new examples.

The notion of a function, defined on a Banach space with a Schauder basis, which is locally dependent on finitely many
coordinates was introduced in [PWZ]. The following definition is a slight generalisation which was used by many authors.

Definition 1. Let X be a topological vector space, ˝ � X an open subset, E be an arbitrary set, M � X# and g W ˝ ! E. We
say that g depends only onM on a set U � ˝ if g.x/ D g.y/ whenever x; y 2 U are such that f .x/ D f .y/ for all f 2M . We
say that g depends locally on finitely many coordinates from M (LFC-M for short) if for each x 2 ˝ there are a neighbourhood
U � ˝ of x and a finite subset F � M such that g depends only on F on U . We say that g depends locally on finitely many
coordinates (LFC for short) if it is LFC-X�.

We may equivalently say that g depends only on ff1; : : : ; fng � X# on U � ˝ if there exist a mapping G W Rn ! E such that
g.x/ D G.f1.x/; : : : ; fn.x// for all x 2 U . If g is moreover LFC (i.e. LFC-X�), then we have the following characterisation:

Lemma 2. Let X be a topological vector space, ˝ � X an open subset, E be an arbitrary set, M � X� and g W ˝ ! E. The
mapping g is LFC-M if and only if for each x 2 ˝ there are an open neighbourhood U � ˝ of x, n 2 N, a biorthogonal system
f.ei ; fi /g

n
iD1 � X �M , an open set V � Rn, and a mapping G W V ! E, such that g.y/ D G

�
f1.y/; : : : ; fn.y/

�
for all y 2 U ,

where G.w/ D g
�
x C

Pn
iD1

�
wi � fi .x/

�
ei
�

for each w 2 V .

Proof. Let U0 be an open neighbourhood of x and n 2 N such that g depends only on ff1; : : : ; fng � M on U0. Without loss
of generality we may assume that the functionals f1; : : : ; fn are linearly independent. Hence there are vectors e1; : : : ; en 2 X
such that f.ei ; fi /gniD1 is a biorthogonal system (as \i¤j kerfi 6� kerfj for each 1 � j � n). Let ˚ W Rn ! X be defined as
˚.w/ D x C

Pn
iD1

�
wi � fi .x/

�
ei . This is a continuous mapping, so the set V D ˚�1.U0/ is an open subset of Rn. Notice that

G.w/ D g.˚.w// for each w 2 V . Let 	 W X ! Rn be defined as 	.y/ D .f1.y/; : : : ; fn.y//. This is a continuous mapping,
so the set U D 	�1.V / \ U0 is open. Moreover, ˚.	.x// D x, hence U is an open neighbourhood of x.

Now choose any y 2 U . Since 	.y/ 2 V , G.	.y// is well defined. Further, from the facts that y 2 U0, ˚.	.y// 2 U0,
fj .˚.	.y/// D fj .x/C

Pn
iD1

�
fi .y/ � fi .x/

�
fj .ei / D fj .y/ for each 1 � j � n, and g depends only on ff1; : : : ; fng on U0,

we may conclude that G.	.y// D g.˚.	.y/// D g.y/.
The other implication is obvious.

�

Notice, that if g W ˝ ! E is LFC and h W E ! F is any mapping, then also h ı g is LFC.
The canonical example of a non-trivial LFC function is the sup norm on c0, which is LFC-fe�i g away from the origin. Indeed,

take any x D .xi / 2 c0, x ¤ 0. Let n 2 N be such that jxi j < kxk1 =2 for i > n. Then k�k1 depends only on fe�1 ; : : : ; e
�
ng on

U.x; kxk1 =4/.
The following lemma shows that under some conditions it is possible to join together some of the neighbourhoods in the

definition of LFC:
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Lemma 3. Let X be a topological vector space, E be an arbitrary set, g W X ! E and M � X#. Let U˛ � X , ˛ 2 I be open
sets such that U D

S
˛2I U˛ is convex and g depends only on M on each U˛ , ˛ 2 I . Then g depends only on M on the whole

of U .

Proof. Pick any x; y 2 U such that f .x/ D f .y/ for all f 2 M . Since U is convex, the line segment Œx; y� � U . Since
Œx; y� is compact, there is a finite covering U1; : : : ; Un 2 fU˛g˛2I of Œx; y�. Since Œx; y� is connected, without loss of generality
we may assume that x 2 U1, y 2 Un and there are xi 2 Ui \ UiC1 \ Œx; y� for i D 1; : : : ; n � 1. As xi 2 Œx; y�, we have
f .x/ D f .y/ D f .xi / for all f 2M and i D 1; : : : ; n � 1. Therefore g.x/ D g.x1/ D � � � D g.xn�1/ D g.y/.

�

A norm on a normed space is said to be LFC, if it is LFC away from the origin. Recall that a bump function (or bump) on a
topological vector space X is a function b W X ! R with a bounded non-empty support.

The existence of a LFC norm (or even a continuous LFC bump) on a Banach space is known to have strong implications on the
structure of the space (see e.g. [F1], [PWZ], [FZ]). The role of continuity in these results seems rather interesting. It turns out that
the essence lies in the discrete (or combinatorial) structure of the space itself. This leads us to the following general concept:

Definition 4. LetX be a vector space,A � X , U � X be arbitrary subsets ofX . We say that A is determined on U by a subspace
Z � X if U \ .y CZ/ � A for all y 2 U \ A.

Clearly, if A is determined on U by Z then A is determined on U by any subspace of Z.
Let us denote the set of all finite-codimensional subspaces of a vector space X by F C.X/. If X is moreover a topological

vector space, we denote by F Cc.X/ the set of all closed finite-codimensional subspaces.

Definition 5. Let X be a topological vector space, A � X be an arbitrary subset of X and Z � F C.X/. We say that A is locally
finite-dimensionally determined by Z (or LFD-Z for short) if for any x 2 X there is a neighbourhood U � X of x and Z 2 Z

such that A is determined by Z on U . We say that A is locally finite-dimensionally determined (or LFD) if A is LFD-F C.X/.

Fact 6. Let X be a topological vector space, let A � X and M � X#. The function �A is LFC-M if and only if A is LFD-Z for
Z D f

Tn
iD1 kerfi I ff1; : : : ; fng �M;n 2 Ng.

Proof. A is determined on U by
Tn
iD1 kerfi if and only if �A on U depends only on ff1; : : : ; fng � X#.

�

Fact 7. Let X be a topological vector space and A;B � X .
(a) X and ; are LFD. If A and B are LFD, then so are the sets A \ B , A [ B and X n A. In other words, all LFD subsets of X

form an algebra.
(b) If T W X ! X is an automorphism or a translation and A is LFD, then T .A/ is also LFD.
(c) If A and B are separated (i.e. A \ B D A \ B D ;) and A [ B is LFD, then both A and B are LFD.

Proof. (a): Fix x 2 X . If U , V are neighbourhoods of x such that A is determined by Z on U and B is determined by W on V ,
then both A \ B and A [ B are determined by Z \W on U \ V . The rest is obvious.

(b): It is obvious, since an automorphism preserves the finite codimension of subspaces.
(c): For a fixed x 2 X there is a neighbourhood of x such that A [ B is determined by Z 2 F C.X/ on U and U � x is

balanced, hence U is connected. For any y 2 U \ A, we have U \ .y C Z/ � A [ B and U \ .y C Z/ is connected, which
means that U \ .y CZ/ � A.

�

Theorem 8. Let X be a topological vector space and Z � F C.X/. If a set A � X is LFD-Z, then its closure A is LFD-eZ, whereeZ D fZ; Z 2 Zg � F Cc.X/.

Proof. Fix x 2 X . There is an open neighbourhood of zero U and Z 2 Z such that A is determined on x C U by Z. Let V be an
open neighbourhood of zero such that V C V C V � U . Choose any y 2 .x C V / \ A and ´ 2 Z such that y C ´ 2 x C V .
There is a net fyg � A such that y ! y and a net f´g � Z such that ´ ! ´. We can moreover assume that fyg � x C U ,
fyg � y C V and f´g � ´ C V . Then y C ´ � x D .y C ´ � x/ C .y � y/ C .´ � ´/ 2 V C V C V � U . Thus
y C ´ 2 x C U which together with y 2 .x C U/ \ A gives y C ´ 2 A. It follows that y C ´ 2 A, which means that A is
determined on x C V by Z.

�

Similarly, we have

Theorem 9. Let X be a topological vector space, ˝ � X an open subset, E a Hausdorff topological space and g W ˝ ! E. If g
is LFC-X# and continuous, then g is LFC-X�.

Proof. Fix x 2 ˝. Let U be a neighbourhood of x such that g depends only on ff1; : : : ; fng � X# on U . Let f Qf1; : : : ; Qfng � X�

are such that
T

ker Qfi D
T

kerfi . Choose y 2 U . Since g.´/ D g.y/ for any ´ 2 U such that ´ 2 y C
T

kerfi , the continuity
of g implies that g.´/ D g.y/ also for any ´ 2 U such that ´ 2 y C

T
kerfi , i.e. whenever Qfi .y/ D Qfi .´/ for all 1 � i � n.

�
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If X is a topological vector space, let us recall that a set-valued mapping  W X ! 2X is called a cusco mapping if for each
x 2 X ,  .x/ is a non-empty compact convex subset of X and for each open set U in X , fx 2 X I .x/ � U g is open.

Lemma 10. Let X be a locally convex space, E be an arbitrary set and g W X ! E be a LFC-M mapping for some M � X#.
Further, let  W X ! 2X be a cusco mapping with the following property: For any finite F � M , if x; y 2 X are such that
f .x/ D f .y/ for all f 2 F , then for each w 2  .x/ there is ´ 2  .y/ such that f .w/ D f .´/ for all f 2 F .

Then the mapping G W X ! 2E , G.x/ D g. .x//, is LFC-M .

Proof. Let x0 2 X . We can find a finite covering of the compact  .x0/ by open sets Ui , i D 1; : : : ; n, so that g depends only on
a finite set Fi �M on Ui . Let W be a convex neighbourhood of zero such that  .x0/CW �

S
Ui and put U D  .x0/CW

and F D
S
Fi . As U is convex and U �

S
Ui , by Lemma 3, g depends only on F on U .

Suppose V � X is a neighbourhood of x0 such that .V / � U . Let x; y 2 V be such that f .x/ D f .y/ for all f 2 F . Choose
w0 2 G.x/ and find w 2  .x/ for which g.w/ D w0. Then, by the assumption on  , there is ´ 2  .y/ such that f .w/ D f .´/
for all f 2 F . But we have also w 2  .x/ � U and ´ 2  .y/ � U and hence g.w/ D g.´/. Therefore w0 2 G.y/ and by the
symmetry we can conclude that G.x/ D G.y/.

�

As we shall see, the existence of a non-empty bounded LFD set in an infinite-dimensional space has a strong impact on the
structure of the space.

Definition 11. We say that a topological vector space X is locally flat if there exists a non-empty bounded LFD subset A � X .

Let X be a topological vector space, Y � X and Z � X be linear subspaces. As follows from the remark after Definition 4
and the fact that dimY=.Y \Z/ � dimX=Z, any linear subspace of a locally flat space is also locally flat.

By Theorem 8 and Fact 6, X is locally flat if and only if it admits a LFC bump function b (in general arbitrary, i.e. even
non-continuous). Indeed, then .1 � �f0g/ ı b is a characteristic function of a bounded set which is LFC.

Theorem 12. Let X be a locally flat topological vector space. Then X has a basis of neighbourhoods of zero formed by bounded
LFD sets.

Proof. It suffices to show that there is a set C � X that is a bounded LFD neighbourhood of zero in X , since then by the
boundedness f 1

n
C g1nD1 is a basis of neighbourhoods of zero.

By Fact 7 and Theorem 8 we may assume that there is a closed bounded LFD-F Cc.X/ subset A of X such that 0 2 A. There
is a neighbourhood U of zero and Y 2 F Cc.X/ such that A is determined by Y on U . Put A0 D A \ Y . By Fact 7, A0 is still a
closed bounded LFD-F Cc.X/ subset of X for which 0 2 U \ Y � A0 � Y .

We assume that codimY D 1, otherwise we repeat inductively the following construction.
Choose e 2 X n Y and denote B D fseI jsj � 1g. Put A1 D A0 C B . The set A1 is bounded and LFD-F Cc.X/: Fix

any x 2 X , x D y C te for y 2 Y and t scalar. There is a neighbourhood V of y such that A0 is determined on V by some
Z 2 F Cc.X/, Z � Y . We denote VY D V \ Y and put W D VY C te C B . Since Y is closed and codimY D 1, the product
topology on Y ˚ spanfeg coincides with the topology of X and thus W is a neighbourhood of x. Then for any ´ 2 W \ A1 we
have ´ D ´1 C se, where ´1 2 VY \ A0 D V \ A0 and jsj � 1. As A0 is determined by Z on V , we have V \ .´1 CZ/ � A0
and therefore W \ .´CZ/ D VY \ .´1 CZ/C se � A0 C se � A1.
A1 is a neighbourhood of zero in X , because A1 � .U \Z/C B and U \Z is a neighbourhood of zero in Z and we use the

same argument on product topology as above.
�

Using Kolmogorov’s theorem we immediately obtain

Corollary 13. Any Hausdorff locally convex space that is locally flat is normable.

Another consequence follows from Lemma 10.

Corollary 14. Let X be a locally flat normed linear space. Then X has a balanced bounded LFD neighbourhood of zero.

Proof. By Theorem 12 there is A � X which is a bounded LFD neighbourhood of zero. Define a mapping  W X ! 2X by
 .x/ D ftxI jt j � 1g. It is easy to check that  is a cusco mapping. Furthermore, let F � X#, and suppose x; y 2 X are such
that f .x/ D f .y/ for all f 2 F . Choose any w 2  .x/. Then w D tx for some suitable t , jt j � 1, and we have ty 2  .y/
and f .w/ D f .tx/ D f .ty/ for all f 2 F . The function g D �A is LFC by Fact 6. Thus Lemma 10 implies that the function
h.x/ D infjt j�1 g.tx/ D infg. .x// is LFC.

Let D D h�1.f1g/. This set is LFD by Fact 6. We have h.x/ � g.x/ for all x 2 X and hence D � A and D is bounded.
Since A is a neighbourhood of zero, there is some ball B , B � A, and we have h.x/ D 1 for any x 2 B . Thus B � D and D
is a neighbourhood of zero. Next, h.tx/ D infjsj�1 g.tsx/ � infjsj�1 g.sx/ D h.x/ for any t , jt j � 1. Therefore x 2 D implies
tx 2 D for all t , jt j � 1 and D is balanced.

�

Theorem 15. Let X be a normed linear space, A � X be a balanced bounded LFD neighbourhood of zero. If the Minkowski
functional p of A is continuous, then it is LFC away from the origin. In particular, if A is moreover convex, then p is an equivalent
LFC norm.
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Proof. Without loss of generality we may assume that A is closed and LFD-F Cc.X/.
Fix any x 2 X n f0g and put ˇ D p.x/. There is 0 < ı < kxk such that ˇA is determined by Z 2 F Cc.X/ on U.x; ı/. Let

t1 D
�
1C kxk

kxkCı

�
=2 and t2 D

�
1C kxk

kxk�ı

�
=2. Let V be a neighbourhood of x such that jp.y/ � p.x/j < ˇminf1 � t1; t2 � 1g

for y 2 V . Put
U D V \

\
t1<t<t2

U.tx; tı/ D V \ U.t1x; t1ı/ \ U.t2x; t2ı/;

which is a neighbourhood of x, as by the definition of t1 and t2 both U.t1x; t1ı/ and U.t2x; t2ı/ are neighbourhoods of x. (The
second equality follows by an easy convexity argument.)

It is easy to see that each of the sets tˇA, t1 < t < t2, is determined on U by Z. Furthermore, t1ˇ < p.y/ < t2ˇ for any
y 2 U . Since A is closed, we have y 2 p.y/A and y … tA for 0 < t < p.y/. Therefore y C ´ 2 p.y/A and y C ´ … tA for
t1ˇ < t < p.y/ whenever ´ 2 Z is such that y C ´ 2 U . As A is balanced, it follows that y C ´ … tA for all 0 < t < p.y/ and
hence p.y C ´/ D p.y/ whenever ´ 2 Z is such that y C ´ 2 U . This means that p depends on U only on f1; : : : ; fn 2 X�

such that Z D
T

kerfi .
�

Theorem 16 ([PWZ]). An infinite-dimensional locally flat Banach space X is saturated by c0.

Proof. As any subspace of X is also locally flat, it suffices to prove that c0 � X .
Let A � X be a non-empty bounded LFD set. Without loss of generality we may assume that 0 2 A. We will inductively

construct a sequence fxig � X satisfying
Pn
iD0 "ixi 2 A for all choices of signs "i D ˙1, i D 0; : : : ; n, as follows: Set x0 D 0.

If x0; x1; : : : ; xn�1 have already been defined, we put

An D

�
y 2 X n f0gI

n�1X
iD0

"ixi C "ny 2 A for all choices of signs "i D ˙1, i D 0; : : : ; n
�
:

Since A is LFD, the set An is non-empty. Indeed,
Pn�1
iD0 "ixi 2 A for any "i D ˙1 by the induction and in the neighbourhood of

each of these points the set A is determined by some finite-codimensional subspace. Since there is finitely many of these points, the
intersection of all the respective finite-codimensional subspaces is non-empty and sufficiently small vectors from this intersection
belong to An. We put Mn D supy2An

kyk, and choose xn 2 An such that kxnk > Mn=2.
We claim that the series

P1
iD1 xi does not converge unconditionally. Indeed, let us assume the contrary. Then the set

S D
˚Pn

iD1 "ixi I "i D ˙1; n 2 N
	
� A is relatively compact and we can find a finite covering of the compact S by open

balls U.a1; ı1/; : : : ; U.ak ; ık/ and Z1; : : : ; Zk � F C.X/ such that A is determined on U.ai ; 2ıi / by Zi , i D 1; : : : ; k. We put
Z D

Tk
iD1Zi and ı D min1�i�k ıi . As dimZ D 1 (and hence Z is non-trivial), we can choose ´ 2 Z for which k´k D ı.

Since ´ 2 An for any n 2 N, it follows that kxnk > Mn=2 � ı=2 for all n 2 N, which contradicts the convergence of
P1
iD1 xi .

Without loss of generality we may assume that
P1
iD1 xi is not convergent (otherwise we change appropriately the signs of xi ).

As the set A is bounded, there is K > 0 such that
Pn

iD1 "ixi
 � K for any choice of "i D ˙1 and all n 2 N. Thus

P1
iD1 xi is

weakly unconditionally Cauchy and by the Bessaga-Pełczyński theorem ([LT, 2.e.4]) X contains an isomorphic copy of c0. (The
canonical basis of c0 is equivalent to some sequence of blocks of fxig.)

�

Theorem 17. Let A � X be a non-empty bounded LFD-Z subset of a Banach space X . Denote Z? D
S
fZ?I Z 2 Zg. Then

Z? D X�.

Proof. Since Z? D Z
?

, by Theorem 8 we may assume that A is closed. Pick any f 2 X� and " > 0 and notice that f is
bounded on A. Let IA W X ! R [ fC1g be the indicator function of the set A, i.e. IA.x/ D 0 for x 2 A and IA D C1 for
x 2 X n A. Put ' D IA � f . Then ' is a lower semi-continuous bounded below function and so by the Ekeland variational
principle there is x0 2 X such that '.x/ � '.x0/ � "kx � x0k for every x 2 X . Obviously x0 2 A and for every x 2 A we have
�f .x/ � �f .x0/ � "kx � x0k from which it follows that

f .x � x0/ � "kx � x0k for every x 2 A. (1)

Let ı > 0 and Z 2 Z be such that A is determined by Z on U.x0; ı/. For any ´ 2 Z, k´k < ı we have x0 C ´ 2 A and hence
f .´/ � "k´k by (1). This means that kf �Zk � ". By the Hahn-Banach theorem we can find g 2 X� such that g D f on Z and
kgk � ". Clearly, f � g 2 Z? and kf � .f � g/k � ".

�

The next corollary removes the assumption of continuity in a theorem from [FZ].

Corollary 18. Let X be a Banach space, M � X� and X admits an arbitrary LFC-M bump function. Then spanM D X�.

Proof. Let b be the LFC-M bump function. Put A D fx 2 X I b.x/ ¤ 0g and Z D
˚Tn

iD1 kerfi I f1; : : : ; fn 2 M;n 2 N
	
.

Then A is a non-empty bounded LFD-Z set (Fact 6), Z? D spanM and so spanM D X� by Theorem 17.
�
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Corollary 19. Any infinite-dimensional locally flat Banach space X is a c0-saturated Asplund space.

Proof. X is c0-saturated by Theorem 16. Since local flatness passes to subspaces, it is enough to show that X� is separable
provided that X is separable.

By the Lindelöf property of X there exists a countable collection Z D fZig � F C.X/ such that A is LFD-Z. If Z 2 F C.X/,
then Z? � X� is a subspace with dimZ? � codimZ. As Zi is finite-codimensional, we can find ffi;j g

ni

jD1 � Z?i , such
that Z?i D spanffi;j g

ni

jD1, where ni � codimZi . We have Z? D
S
i Z
?
i � span

S
i Z
?
i D span

S
iffi;1; : : : ; fi;ni

g and by
Theorem 17, X� D span

S
iffi;1; : : : ; fi;ni

g, hence it is separable.
�

3. SPACES WITH SCHAUDER BASES

The word “coordinate” in the term LFC originates of course from spaces with bases, where LFC was first defined using the
coordinate functionals. In order to apply the LFC techniques to spaces without a Schauder basis, the notion had to be obviously
generalised using arbitrary functionals from the dual. However, as we will show in this section, the generalisation does not
substantially increase the supply of LFC functions on Banach spaces with a Schauder basis, and we can always in addition assume
that the given LFC function in fact depends on the coordinate functionals. This fact is not only interesting in itself; it is the main
tool for smoothing up LFC bumps on separable spaces with basis.

We begin with a simple related result for Markushevich bases:

Theorem 20. Let E be a set, X be a separable Banach space and g W X ! E be a LFC mapping. Then there is a Markushevich
basis fxi ; x�i g � X �X

� such that g is LFC-fx�i g.

Proof. By the Lindelöf property of X we can choose a countable ffig � X� such that g is LFC-ffig. Find a countable fgig � X�

such that it separates points of X and ffig � fgj g. Then we can use the Markushevich theorem (see e.g. [F–Z]) to construct a
Markushevich basis fxi ; x�i g such that spanfx�i g D spanfgig � spanffig.

Now let x 2 X and U � X be a neighbourhood of x such that g depends only on M D ff1; : : : ; fng on U . Let
M � spanfx�1 ; : : : ; x

�
mg. Then for any y; ´ 2 U such that x�j .y/ D x

�
j .´/ for all j D 1; : : : ; m we have also fi .y/ D fi .´/ for

any i D 1; : : : ; n and hence g.y/ D g.´/. Thus g depends only on fx�1 ; : : : ; x
�
mg on U .

�

We would like to establish a similar result for Schauder bases. In this context, shrinking Schauder bases emerge quite naturally,
taking into account Corollary 18 (see also Theorem 28). We will use the following simple fact:

Fact 21. Let X and Y be Banach spaces with equivalent Schauder bases fxig and fyig respectively. Then fxig is shrinking if and
only if fyig is shrinking.

Proof. Let fxig be a shrinking basis and T W Y ! X be an isomorphism of Y onto X such that Tyi D xi . Then T � W X� ! Y �

is an isomorphism of X� onto Y � such that T �x�i D y
�
i and thus

Y � D T �.X�/ D T �.spanfx�i g/ � T �.spanfx�i g/ D spanT �.fx�i g/ D spanfy�i g:

�

The next result is the main tool used in the sequel for the study of functions locally dependent on finitely many coordinates on
spaces with shrinking Schauder bases.

Lemma 22. Let X be a Banach space with a shrinking Schauder basis feig. Let f 2 X�, " > 0 and n 2 N. Then there is a
(shrinking) Schauder basis fxig of X and N 2 N, N > n, such that xi D ei for 1 � i < N , fxig is .1C "/-equivalent to feig,
spanfxigmiDk D spanfeigmiDk for all 1 � k � n and m � k, x�i D e

�
i if i < n or i � N , and spanfxi I i � N g � kerf .

Proof. Without loss of generality we may assume that there is a ´ 2 spanfei I i � ng for which f .´/ D 1. Let us denote
fk D f � P �

k�1
f . As feig is shrinking, kfkk ! 0 and hence we can find N 2 N such that N > max supp ´ � n and

kfN k �
"

.2C"/k´k
. Put xi D ei for 1 � i < N and xi D ei � f .ei /´ for i � N . For any m1,m2 2 N and any sequence faig of

scalars we have 
m2X
iDm1

aixi

 D

m2X
iDm1

aiei � ´

m2X
iDmaxfm1;N g

aif .ei /

 �

m2X
iDm1

aiei

C
´fN

 
m2X
iDm1

aiei

!
�
�
1C k´k kfN k

�
m2X
iDm1

aiei

 �
�
1C

"

2C "

�
m2X
iDm1

aiei


and 

m2X
iDm1

aixi

 �

m2X
iDm1

aiei

 �
´fN

 
m2X
iDm1

aiei

! �
�
1 �

"

2C "

�
m2X
iDm1

aiei

:
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This implies that fxig is a basic sequence .1C "/-equivalent to feig. Since ´ 2 spanfxi I n � i < N g, we have spanfxigmiDk D
spanfeigmiDk for all 1 � k � n and m � k, and therefore spanfxig D spanfeig, which implies that fxig is a basis of X . Moreover,

x�i .x/ D
X

e�j .x/x
�
i .ej / D

X
j<N

e�j .x/x
�
i .xj /C

X
j�N

e�j .x/x
�
i

�
xj C f .ej /´

�
D

X
e�j .x/x

�
i .xj /C x

�
i .´/

X
j�N

e�j .x/f .ej / D e
�
i .x/ if i < n or i � N .

Finally, f .xi / D 0 for i � N .
�

It is perhaps worth noticing that the method used in the previous lemma (and the next theorem) does not rely on the classical
argument of perturbation by the norm-summable sequence. In fact our new basis is “far” away from the original one.

Theorem 23. Let X be a Banach space with a shrinking Schauder basis feig, let ffig � X� be a countable subset and " > 0.
Then there is a (shrinking) Schauder basis fxig of X such that it is .1C "/-equivalent to feig, spanfxigmiD1 D spanfeigmiD1 for all
m 2 N and spanffig � spanfx�i g.

Proof. Choose a sequence of "i > 0 such that
Q
i .1C "i / � .1C "/ and put N0 D 1. We apply Lemma 22 to feig, f1, "1 and

n D 1. We obtain a basis fx1i g which is .1C "1/-equivalent to feig and N1 2 N such that spanfx1i I i � N1g � kerf1. Moreover,
x1i D ei for i < N1 and spanfx1i g

m
iD1 D spanfeigmiD1 for all m 2 N.

We proceed by induction. Suppose the basis fxki g and Nk 2 N have already been defined in such a way that the basis
fxki g is

Q
j�k.1 C "j /-equivalent to feig, xki D xk�1i for i < Nk , spanfxki g

m
iD1 D spanfeigmiD1 for all m 2 N, and finally

spanfxki I i � Nj g � kerfj for 1 � j � k. We apply Lemma 22 to fxki g, fkC1, "kC1 and n D Nk in order to obtain a basis
fxkC1i g which is

Q
j�kC1.1C "j /-equivalent to feig and a number NkC1 2 N, NkC1 > Nk , such that spanfxkC1i I i � NkC1g �

kerfkC1. Moreover, xkC1i D xki for i < NkC1 and spanfxkC1i gmiD1 D spanfxki g
m
iD1 D spanfeigmiD1 for all m 2 N. Since also

spanfxkC1i gmiDNj
D spanfxki g

m
iDNj

for all 1 � j � k and m � Nj , we have spanfxkC1i I i � Nj g � kerfj for 1 � j � k C 1.

Clearly, there is a sequence fxig such that limj!1 x
j
i D xi for all i 2 N. (This is because the sequence Nk is increasing and

thus xji is eventually constant (in j ).) It is straightforward to check that spanfxigmiD1 D spanfeigmiD1 for all m 2 N, fxig is a basis
of X which is .1C "/-equivalent to feig and spanfxi I i � Nj g � kerfj (which means that fj 2 spanfx�i I i < Nj g) for any
j 2 N.

�

If a Banach space X has a shrinking Schauder basis, using the Lindelöf property of X (as in the proof of Theorem 20) and
Theorem 23 we obtain the following corollary, which allows us to work only with LFC-fe�i g functions.

Corollary 24. Let E be a set, X be a Banach space with a shrinking Schauder basis feig, g W X ! E be a LFC mapping and
" > 0. Then there is a (shrinking) Schauder basis fxig of X , .1C "/-equivalent to feig, such that g is LFC-fx�i g.

Using Fact 6 we can reformulate this corollary as follows:

Corollary 25. Let X be a Banach space with a shrinking Schauder basis feig, A � X be LFD-F Cc.X/ and " > 0. Then there is
a (shrinking) Schauder basis fxig of X , .1C "/-equivalent to feig, such that A is LFD-Z for Z D fspanfxig1iDnI n 2 Ng.

The following lemma seems to be the crucial reason why we need to work with Schauder bases.

Lemma 26. Let X be a Banach space with a Schauder basis feig and E be an arbitrary set. Then f W X ! E is LFC-fe�i g if and
only if for each x 2 X there is ı > 0 and n0 2 N such that f .y/ D f .Pny/ whenever kx � yk < ı and n � n0.

Proof. The “if” part is trivial: Pn0
y D Pn0

´ whenever e�i .y/ D e
�
i .´/ for 1 � i � n0. Thus f .y/ D f .Pn0

y/ D f .Pn0
´/ D

f .´/ if moreover y; ´ 2 U.x; ı/, which means that f depends only on fe�1 ; : : : ; e
�
n0
g on U.x; ı/.

The “only if” part is also simple. LetK be a basis constant of feig and x 2 X . There ism 2 N and ı > 0 such that f .y/ D f .´/
if y; ´ 2 U.x; ı.1CK// and e�i .y/ D e

�
i .´/ for 1 � i � m. Choose n0 � m such that kx � Pnxk < ı for all n � n0. Then for

any n � n0 and y 2 X such that kx � yk < ı we have kPny � xk � kPny � Pnxk C kPnx � xk < ı.1CK/ and therefore
f .y/ D f .Pny/.

�

Let X be a Banach lattice. We say that a function f W X ! R is a lattice function if it satisfies either f .x/ � f .y/ whenever
jxj � jyj, or f .x/ � f .y/ whenever jxj � jyj. Recall that a Banach space X with an unconditional basis feig has a natural lattice
structure defined by

P
aiei � 0 if and only if ai � 0 for all i 2 N. The same holds for `1.

The following technical lemma will be useful later for smoothing up lattice functions.

Lemma 27. Let f W R ! R be an even function that is non-decreasing on Œ0;1/ and let ' W R ! R be an even function
with bounded support that is non-increasing on Œ0;1/. Then .f � '/.x/ D

R
R f .x � t /'.t/ dt is an even function that is

non-decreasing on Œ0;1/.
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Proof. Note that f � ' is well defined as f and ' are bounded on bounded sets.
Obviously, .f � '/.�x/ D

R
R f .�x � t /'.t/ dt D

R
R f .x C t /'.t/ dt D

R
R f .x � t /'.t/ dt D .f � '/.x/, using first the

fact that f is even, then the fact that ' is even.
Now pick any 0 � x < y <1. The function  .t/ D '.y�x

2
� t / � '.x�y

2
� t / is an odd function (this is obvious), such that

 .t/ � 0 for t � 0. Indeed, either we have 0 � y�x
2
� t � x�y

2
� t , or 0 < y�x

2
� t � t � x�y

2
and in both cases we use the

properties of '. Similarly we get that the function t 7! f
�
xCy
2
C t

�
� f

�
xCy
2
� t
�

is non-negative for t � 0. Therefore,

.f � '/.y/ � .f � '/.x/ D

Z
R

f .t/
�
'.y � t / � '.x � t /

�
dt D

Z
R

f
�
xCy
2
C t

�
 .t/ dt

D

Z
.�1;0/

f
�
xCy
2
C t

�
 .t/ dt C

Z
.0;1/

f
�
xCy
2
C t

�
 .t/ dt

D �

Z
.0;1/

f
�
xCy
2
� t
�
 .t/ dt C

Z
.0;1/

f
�
xCy
2
C t

�
 .t/ dt

D

Z
.0;1/

�
f
�
xCy
2
C t

�
� f

�
xCy
2
� t
��
 .t/ dt � 0:

�

Now we can prove one of the main results of this paper.

Theorem 28. Let X be a Banach space with a Schauder basis feig. The following statements are equivalent:
(i) feig is shrinking and X admits a continuous LFC bump.

(ii) X admits a continuous LFC-fe�i g bump.
(iii) X admits a C1-smooth LFC-fe�i g bump.

For the proof of Theorem 28 we will need the following lemma, the basic idea of which is implicitly contained in [Haj1]. Let
� D fıng

1
nD1 be a sequence of positive real numbers. We denote by V � an open subset of `1 such that x 2 V � if and only if

there is nx 2 N satisfying jx.nx/j � ınx
> supn>nx

jx.n/j C ınx
. For any x 2 V �, the set

V �nx
D

n
y 2 `1 W jy.nx/j � ınx

> sup
n>nx

jy.n/j C ınx

o
� V �

is an open neighbourhood of x in `1.

Lemma 29. Let " > 0 and a sequence � D fıng1nD1, ın > 0 be given. There is a convex lattice 1-Lipschitz function F W `1 ! R
such that kxk1 � F.x/ � kxk1C " for any x 2 `1 and F is LFC-fe�i g and C1 on V �. Moreover, for any x 2 V �, F depends
only on fe�i g

nx

iD1 on V �nx
, where e�i are the coordinate functionals on `1.

Proof. Let "1 D minfı1; "g and "n D minfın; "n�1g for n > 1. Choose a sequence f'ng1nD1 of C1-smooth even functions
'n W R! Œ0;1/ such that supp'n � Œ�"n; "n�, 'n is non-increasing on Œ0;1/ and

R
R 'n.t/ dt D 1. Define a sequence fFng1nD0

of functions Fn W `1 ! R by the inductive formula

F0.x/ D kxk1 ;

Fn.x/ D

Z
R

Fn�1.x C ten/'n.t/ dt:

It is easily checked that each Fn is convex, 1-Lipschitz and Fn.x/ � kxk1 � " for any x 2 `1. To see that Fn is lattice, pick
x; y 2 `1, x D .xi /, y D .yi /, satisfying jyj � jxj. Define g W R! R by g.u/ D Fn�1.y C .u � yn/en/. Then

Fn.x/ � Fn.y/ D

Z
R

�
Fn�1.x C ten/ � Fn�1.y C ten/

�
'n.t/ dt

D

Z
R

�
Fn�1.x C ten/ � Fn�1

�
y C .xn � yn C t /en

��
'n.t/ dt

C

Z
R

�
Fn�1

�
y C .xn � yn C t /en

�
� Fn�1.y C ten/

�
'n.t/ dt

D

Z
R

�
Fn�1.x C ten/ � Fn�1

�
y C .xn � yn C t /en

��
'n.t/ dt C g � 'n.xn/ � g � 'n.yn/ � 0;

because Fn�1.x C ten/ � Fn�1.y C .xn � yn C t /en/ which follows from the induction hypothesis (notice that we have
xC ten D .x1; : : : ; xn�1; xnC t; xnC1; : : : / and yC .xn � ynC t /en D .y1; : : : ; yn�1; xnC t; ynC1; : : : /, thereby jx C tenj �
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jy C .xn � yn C t /enj in the lattice sense), and because g is an even function non-decreasing on Œ0;1/ also by the induction
hypothesis and so we may use Lemma 27.

Further, by Jensen’s inequality,

Fn.x/ D

Z
R

Fn�1.x C ten/'n.t/ dt � Fn�1

 
x C en

Z
R

t'n.t/ dt

!
D Fn�1.x/;

which means that the sequence fFng is non-decreasing. Consequently the function F D limn Fn D supn Fn is convex, lattice,
1-Lipschitz and kxk1 � F.x/ � kxk1 C " for any x 2 `1.

For any y 2 `1 and k 2 N we have

Fk.y/ D

"kZ
�"k

� � �

"1Z
�"1

ky C t1e1 C � � � C tkekk1 '1.t1/ � � �'k.tk/ dt1 � � � dtk :

Fix an arbitrary x 2 V � and pick any y 2 V �nx
and k > nx . Then

ky C t1e1 C � � � C tkekk1 D ky C t1e1 C � � � C tnx
enxk1 D kPnx

y C t1e1 C � � � C tnx
enxk1 ;

as long as jti j � ınx
for nx � i � k. Since "n � ınx

for n � nx and
R

R 'n D 1, it follows that Fk.y/ D Fnx
.y/ D Fnx

.Pnx
y/.

This means that F.y/ D Fnx
.Pnx

y/ and therefore F is C1-smooth and depends only on fe�i g
nx

iD1 on V �nx
.

�

Proof of Theorem 28. (iii))(i) follows from Corollary 18.
(i))(ii) follows from Corollary 24: If g is a continuous LFC bump on X , let fxig be a basis obtained from Corollary 24 and T

be an isomorphism ei 7! xi . Then the function g ı T is a continuous LFC-fe�i g bump.
It remains to prove (ii))(iii). Since X admits a continuous LFC-fe�i g bump, using an affine transformation and a composition

with a suitable function we can produce a continuous LFC-fe�i g function b W X ! Œ1; 2� such that b.0/ D 1 and b.x/ D 2

whenever kxk � 1. Choose a sequence of real numbers f�ng decreasing to 1 such that �1 < 1C 1
4

and a decreasing sequence
� D fıng such that 0 < ın < 1

4
.�n � �nC1/ and ı1 < 1

8
.

For a fixed n 2 N, let Tn W Rn ! PnX be a canonical isomorphism, i.e. Tn.t1; : : : ; tn/ D t1e1 C � � � C tnen. Because
b ı Tn 2 C.Rn/ and it is constant outside a sufficiently large ball in Rn, using standard finite-dimensional smooth approximations
we can findebn 2 C1.Rn/ such that supRn jebn.y/ � �nb.Tny/j < ın. We define bn.x/ Debn.T �1n Pnx/ and thus bn 2 C1.X/
and supX jbn.x/ � �nb.Pnx/j < ın.

Further, let us define ˚ W X ! `1 by ˚.x/.n/ D bn.x/. Pick any x 2 X . By Lemma 26 there is ı > 0 and nx 2 N such that
b.y/ D b.Pny/ whenever kx � yk < ı and n � nx . Thus for n > m � nx and kx � yk < ı we have

j˚.y/.m/j � ım D bm.y/ � ım > �mb.Pmy/ � 2ım D �mb.y/ � 2ım > �mC1b.y/C 2ım

> �nb.y/C ın C ım D �nb.Pny/C ın C ım > bn.y/C ım D j˚.y/.n/j C ım:

(The second inequality follows from the definition of ım.) It means that j˚.y/.nx/j � ınx
> j˚.y/.nx C 1/j C ınx

D

supn>nx
j˚.y/.n/j C ınx

. As x 2 X is arbitrary, these inequalities show that ˚.X/ � V � and moreover

˚.y/ 2 V �nx
whenever kx � yk < ı: (2)

We now apply Lemma 29 to the sequence � and " < 1
8

in order to obtain the corresponding function F and we set f D F ı ˚ .
The properties of F together with (2) and the fact that bn depends only on fe�i g

n
iD1 imply that f is LFC-fe�i g. Moreover, as

F B ˚ D F B Pnx
B ˚ on a neighbourhood of x and Pnx

B ˚ 2 C1.X; `1/, we can conclude that f is C1-smooth.
Further,

f .0/ D F
�
˚.0/

�
� k˚.0/k1 C " D sup

n
bn.0/C " � sup

n

�
�nb.0/C ın

�
C " D �1 C ı1 C " < 1C

1

2
:

On the other hand, if kxk � 1 we get

f .x/ � k˚.x/k1 D sup
n
bn.x/ � bnx

.x/ > �nx
b.Pnx

x/ � ınx
D �nx

b.x/ � ınx
> 2 � ı1 > 2 �

1

8
:

Therefore f is a separating function on X and we obtain the desired bump by composing f with a suitable smooth real function.
�

Theorem 30. Let X be a Banach space with an unconditional Schauder basis feig, which admits a continuous LFC bump. Then
X admits a C1-smooth LFC-fe�i g lattice bump.

Proof. Since X is c0-saturated (Theorem 16 or [PWZ]), it does not contain `1 and so by James’s theorem feig is shrinking. By
Theorem 28 there is a continuous LFC-fe�i g bump b on X and without loss of generality we may assume b W X ! Œ0; 1� and
b.0/ > 0. We may further assume that the norm k�k on X is lattice.
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First we show that there is a continuous lattice LFC-fe�i g bump on X . Put g.x/ D infjyj�jxj b.y/. If b.x/ D 0 then also
g.x/ D 0 and g.0/ D b.0/ > 0, hence g is a bump function. Further, for any x; y 2 X such that jyj � jxj we have
g.y/ D infj´j�jyj b.´/ � infj´j�jxj b.´/ D g.x/, thus g is lattice.

For any y 2 X we denote y.i/ D e�i .y/. Define a mapping  W X ! 2X by  .y/ D f´ 2 X I j´j � jyjg. Clearly,  .y/ is a
convex set for any y 2 X . Furthermore, as feig is unconditional,  .y/ is a compact set for any y 2 X (consider the mapping from
a compact space

Q
i Œ� jy.i/j ; jy.i/j� into X defined by .t1; t2; : : : / 7!

P
tiei ).

Now fix an arbitrary x 2 X . Let us define a projection y 7! Qy from X onto  .x/: For any y 2 X we put Qy.i/ D y.i/

if jy.i/j � jx.i/j, Qy.i/ D sgny.i/ jx.i/j otherwise. Notice that j Qyj � jxj and so indeed Qy 2  .x/. Let ´ 2 X . Then
ky � Qyk � kx � ´k for any y 2  .´/. Indeed, j Qy.i/ � y.i/j D

ˇ̌
sgny.i/ jx.i/j � y.i/

ˇ̌
D
ˇ̌
jx.i/j � jy.i/j

ˇ̌
D jy.i/j � jx.i/j �

j´.i/j � jx.i/j � j´.i/ � x.i/j whenever jy.i/j > jx.i/j. Thus j Qy � yj � jx � ´j and we use the fact that k�k is lattice.
Let U be a neighbourhood of  .x/ and ı D dist. .x/; X n U/. Suppose ´ 2 X , kx � ´k < ı. Then ky � Qyk � kx � ´k < ı

for any y 2  .´/ and hence  .´/ � U . This implies that  is a cusco mapping.
Given any " > 0 we can find a neighbourhood U of  .x/ and 0 < ı < dist. .x/; X n U/ such that jb.y/ � b.´/j < "

whenever y; ´ 2 U , ky � ´k < ı. Suppose ´ 2 X , kx � ´k < ı. Then, by the previous paragraph, jb. Qy/ � b.y/j < ". Therefore,
g.´/ D infy2 .´/ b.y/ � infy2 .´/ b. Qy/� " � infy2 .x/ b.y/� " D g.x/� ". Similarly, considering a projection onto  .´/, we
obtain g.x/ � g.´/ � ". This shows that g is continuous.

Suppose that for some F � N we have x.i/ D y.i/ for all i 2 F and let w 2  .x/. Define ´ 2 X such that ´.i/ D w.i/ for
i 2 F and ´.i/ D y.i/ otherwise. Then ´ 2  .y/ and the assumption of Lemma 10 is satisfied. Hence g is LFC-fe�i g.

We note that the process described above does not preserve smoothness as can be easily seen on a one-dimensional example.
Finally, we smoothen up the bump g by repeating the proof of Theorem 28. Notice only that the finite-dimensional smooth

approximations can be made lattice similarly as in the proof of Lemma 29, consequently ˚.�/.n/ is lattice for each n 2 N and
since F from Lemma 29 is lattice too, we can conclude that the resulting function f D F ı ˚ is lattice.

�

4. SPACES WITH SYMMETRIC SCHAUDER BASES

Let X be a Banach space with a symmetric Schauder basis. In such spaces it is possible to define a notion of the non-increasing
reordering, which will be one of the main tools in the sequel. For any x 2 X , x D .xi /, let us denote bybx a vector in X with its
coordinates formed by the non-increasing reordering of the sequence .jxi j/. Notice that we can view X as a linear subspace of c0
through the natural “coordinate” embedding. In the following lemma we gather some simple properties of this reordering which
will be used later.

Lemma 31. Let X be a Banach space with a symmetric Schauder basis, x; y 2 X be arbitrary.

(a) Let k�k be a symmetric lattice norm on X . Then
ˇ̌
kPkbxk � kPkbykˇ̌ � kx � yk for any k 2 N.

(b) bRnbx � bRnx in the lattice sense for any n 2 N.
(c) kbx �byk1 � kx � yk1.
(d) Let k�k be a lattice norm on X such that the basis is normalised. Then the mapping x 7! Pnbx is n-Lipschitz for any n 2 N.

Proof. (a): Consider a set A � N, jAj D k, such that bPAx D Pkbx. Since k�k is symmetric and lattice, kPkbxk D kPAxk and
kPkbyk � kPAyk. Therefore kPkbxk � kPkbyk � kPAxk � kPAyk � kPA.x � y/k � kx � yk.

(b): Let A � N, jAj � n be such that bRnx D bw, where w D bx � PAbx. We put ´ D Rnbx. Then b́i D bxiCn for i 2 N. Let
� W N ! N be a one to one mapping such that bwi D w�.i/. Then bwi D bx�.i/ for i 2 N. As i � �.i/ � i C n, it follows thatb́i DbxiCn �bx�.i/ D bwi .

(c): Let � W N ! N and � W N ! N be one to one mappings such thatbxi D jx�.i/j andbyi D jy�.i/j. Pick any n 2 N. There
is k � n such that jy�.k/j � jy�.n/j. (Otherwise there would be at least n coordinates of y for which their absolute value is greater
than jy�.n/j which is impossible.) Consequently,bxn �byn D jx�.n/j � jy�.n/j � jx�.k/j � jy�.k/j � jx�.k/ � y�.k/j � kx � yk1.

(d): Using the fact that the basis is normalised, then (c) and then the fact that k�k is lattice we obtain kPnbx � Pnbyk D
kPn.bx �by/k �Pn

iD1 j.bx �by/i j � n kbx �byk1 � n kx � yk1 � n kx � yk.
�

This is the key lemma:

Lemma 32. Let X be a Banach space with a symmetric Schauder basis feig, ˚ W X ! R be a continuous function such that
˚.x/ > 0 if x ¤ 0 and fng � .0;C1/ be a decreasing sequence. For any N 2 N define

	N .x/ D max
1�n�N

n˚.Pnbx/:
Then each function 	N is LFC-fe�i g on X n f0g.

Proof. Without loss of generality we may assume that k�k is symmetric and lattice. Let N 2 N and x 2 X n f0g be given. We
claim that there exist a neighbourhood V of x and N1 2 N such thatbxN1

>bxN1C1 and 	N .y/ D 	minfN;N1g
.y/ for all y 2 V .

If jsupp xj � N , then there exists N1 � N such thatbxN1
> bxN1C1 and the claim follows. Otherwise, find N1 < N such that
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bxN1
>bxN1C1 D 0. Then choose 0 < ı <bxN1

=2 such that

j˚.´/ � ˚.bx/j < N1
� N1C1

21
˚.bx/

if k´ �bxk < .N1 C 1/ı. Denote B D supp x and notice that jBj D N1. If kx � yk < ı, i 2 B and j … B , then

jyi j � jxi j � ı �bxN1
� ı > 2ı � ı D ı D jxj j C ı � jyj j

and hence
kRN1

byk D kPNnByk D kPNnB.y � x/k � ky � xk < ı:

Thus, for any n � N1,

kPnby �bxk D kPnby � PN1
bxk � kRN1

byk C kPN1
by � PN1

bxk < ı CN1kby �bxk1 � ı CN1kby �bxk < .N1 C 1/ı:
(For the last but one inequality use Lemma 31(c).) It follows from the choice of ı that for n > N1 we have

n˚.Pnby/ < n �1C N1
� N1C1

21

�
˚.bx/ � N1C1

�
1C

N1
� N1C1

2N1C1

�
˚.bx/ D N1

C N1C1

2
˚.bx/:

On the other hand,

N1
˚.PN1

by/ > N1

�
1 �

N1
� N1C1

21

�
˚.bx/ � N1

�
1 �

N1
� N1C1

2N1

�
˚.bx/ D N1

C N1C1

2
˚.bx/:

This means that 	N .y/ D max1�n�N1
n˚.Pnby/ for kx � yk < ı, which proves the claim.

UsingN1 and V from the claim, let " D .bxN1
�bxN1C1/=2. ChooseA � N, jAj D N1, such that PN1

bx D bPAx. If kx � yk < ",
then jyi j > jyj j whenever i 2 A and j … A. Hence for 1 � n � N1 the mappings y 7! Pnby depend only on fe�i gi2A on U.x; "/.
By the choice of N1, it follows that 	N depends only on fe�i gi2A on V \ U.x; "/.

�

5. ORLICZ SEQUENCE SPACES

This section contains the main result of the paper, namely a construction of an Orlicz sequence space hM with a C1-smooth
and LFC bump, which does not embed into any C.K/ space, K scattered compact. As explained in the introduction, our space is
possibly non-polyhedral. If so, it would be the first separable example of a Banach space for which the best smoothness (in the
wider sense) of its bumps exceeds the best smoothness of its renormings. Indeed, our space has C1-smooth renormings, but, if
non-polyhedral, it would have no LFC renormings. Up to now, the only examples (due to Haydon [Hay3], see also [DGZ]) with a
similar property are non-separable. Recall that Haydon’s space has a C1-smooth bump, but no equivalent Gâteaux smooth norm
(and in fact using basically the same proof one can conclude that it neither has an equivalent LFC renorming).

For the basic properties of Orlicz sequence spaces we refer e.g. to [LT].
Let M be a non-degenerate Orlicz function and denote by hM the respective Orlicz sequence space. Let us define a function

� W hM ! Œ0;1/ by �.x/ D
P1
iD1M.jxi j/. It is easily checked that this function is convex, symmetric and lattice, �.0/ D 0,

�.x/ > 0 for x ¤ 0, and, by the definition of the norm in hM , kxk D 1 if and only if �.x/ D 1. It follows from the convexity that
�.x/ � kxk for x 2 BhM

, while �.x/ � kxk if kxk � 1.

Lemma 33. The mapping � W hM ! `1 defined by �.x/ D
�
M.jxi j/

�
is continuous. Thus the function �.x/ D k�.x/k`1

is
continuous.

Proof. Suppose x 2 hM and 0 < " < 1. Choose N 2 N such that kRNxk < "=2. Then, by the continuity of M , we can choose
0 < ı < "=2 such that kPN .�.x/ � �.y//k`1

D
PN
iD1

ˇ̌
M.jxi j/ �M.jyi j/

ˇ̌
< " if kx � yk < ı. Further, if kx � yk < ı, then

kRNyk � kRNxk C kRN .x � y/k � kRNxk C kx � yk < " and hence

k�.x/ � �.y/k`1
� kPN .�.x/ � �.y//k`1

C kRN�.x/k`1
C kRN�.y/k`1

� "C �.RNx/C �.RNy/ � "C kRNxk C kRNyk < 3": �

Let M be a non-degenerate Orlicz function such that there is a K > 1 for which limt!0CM.Kt/=M.t/ D1. Leung in [L1]
constructs a sequence f�kg of real numbers decreasing to 1 such that the norm on hM defined by jjjxjjj1 D supk �k kPkbxk has
the property that for each x 2 hM there is j 2 N such that jjjxjjj1 D jjjPjxjjj1 and the supremum is attained at some n 2 N. An
immediate consequence of this is that the norm jjjxjjj D supk �

2
k
kPkbxk is LFC-fe�i g. To see this, fix x 2 hM n f0g and let n 2 N

be such that �n kPnbxk D supk �k kPkbxk. Let " D �n kPnbxk .�n � �nC1/=.�2nC �2nC1/ and take y 2 hM satisfying kx � yk < ".
Then, by Lemma 31(a),

ˇ̌
kPkbxk � kPkbykˇ̌ < " for any k 2 N. Thus, for k > n,

�2n kPnbyk > �2n kPnbxk � �2n" D �nC1�n kPnbxk C �2nC1" � �k�n kPnbxk C �2k" � �2k kPkbxk C �2k" > �2k kPkbyk ;
which implies that jjjyjjj D supk�n �

2
k
kPkbyk. Combining this with Lemma 32 we obtain that jjj�jjj is LFC-fe�i g.
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Theorem 34 (Leung). Let M be a non-degenerate Orlicz function. There is a sequence f�kg of real numbers decreasing to 1 such
that the norm on hM defined by

jjjxjjj D sup
k

�k kPkbxk
is LFC-fe�i g if and only if there is a K > 1 such that

lim
t!0C

M.Kt/

M.t/
D1: (3)

Proof. For the “if” part see the remark preceding the theorem. To show the “only if” part (which also appeared in [L1], but not
precisely formulated and without proof), suppose that (3) does not hold and let f�kg be any sequence decreasing to 1. We will
construct a vector x 2 ShM

such that its coordinates form a positive non-increasing sequence and �k kPkxk < 1 for each k 2 N.
Then obviously jjjxjjj D 1, but jjjPnxjjj D maxk�n �k kPkxk < 1 for any n 2 N and so jjj�jjj is not LFC-fe�i g by Lemma 26.

Let fKng be an increasing sequence of real numbers, Kn > 1 and Kn !1. For each n 2 N let Cn > 2 and ftn
k
g1
kD1

be such
that limk!1 t

n
k
D 0 and M.Kntnk / < CnM.t

n
k
/ for all k 2 N. Let f"ng be a sequence of real numbers such that 0 < "n < 1

2
andP1

nD1 "nCn <1. Put m0 D 1 and find A > 0 such that M.1=A/ D 1 (which means keik D A for any i 2 N).
We choose t1 2 ft1k g this way: Define

m1 D min

(
k W �k


kX
iD1

t1ei

 � 1
)
;

and choose t1 2 ft1k g small enough such that

M.t1/ < "2 and (4)

�m1
< 1C

"2

1 � "2

K1 � 1

C1 � 1
: (5)

By the convexity of M we have

M.�m1
t1/ �

�
1 �

�m1
� 1

K1 � 1

�
M.t1/C

�m1
� 1

K1 � 1
M.K1t1/ <

�
1 �

�m1
� 1

K1 � 1

�
M.t1/C

�m1
� 1

K1 � 1
C1M.t1/

D

�
1C .�m1

� 1/
C1 � 1

K1 � 1

�
M.t1/ <

�
1C

"2

1 � "2

�
M.t1/ D

1

1 � "2
M.t1/;

(6)

where the last inequality follows from (5). By the definition of m1 we have m1M.�m1
t1/ � 1. Consequently, using this inequality

together with (6), m1M.t1/ > m1.1 � "2/M.�m1
t1/ � 1 � "2. Hence, by (4),

.m1 � 1/M.t1/ > 1 � 2"2:

We put x1 D
m1�1P
iD1

t1ei . Notice that by the definition of m1 we have 1=�m1�1 > kx1k � 1=�m1
� At1.

Let us continue by induction. Fix any j > 1. Suppose we have ti 2 ft ikg, mi 2 N and xi 2 hM already defined for all i < j
such that

Pi
kD1.mk �mk�1/M.tk/ > 1 � 2"iC1, 1=�mi�1 > kxik � 1=�mi

� Ati and

xi D

iX
lD1

ml�1X
kDml�1

tlek :

We choose tj 2 ft
j

k
g this way: Define

mj D min

(
k � mj�1 W �k

xj�1 C kX
iDmj�1

tj ei

 � 1
)
;

and choose tj 2 ft
j

k
g small enough such that

M.tj / < "jC1 and (7)

�mj
< 1C

"jC1

1 � "jC1
min
1�i�j

�
Ki � 1

Ci � 1

�
: (8)

Notice that this is possible since kxj�1k < 1=�mj�1�1. Using again the convexity of M , the fact that ti 2 ft ikg and (8), for any
1 � i � j we obtain

M.�mj
ti / �

�
1 �

�mj
� 1

Ki � 1

�
M.ti /C

�mj
� 1

Ki � 1
M.Ki ti / <

�
1 �

�mj
� 1

Ki � 1

�
M.ti /C

�mj
� 1

Ki � 1
CiM.ti /

D

�
1C .�mj

� 1/
Ci � 1

Ki � 1

�
M.ti / <

�
1C

"jC1

1 � "jC1

�
M.ti / D

1

1 � "jC1
M.ti /:
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These estimates together with the definition of mj and xj�1 give

j�1X
iD1

.mi �mi�1/M.ti /C .mj �mj�1 C 1/M.tj /

> .1 � "jC1/

 
j�1X
iD1

.mi �mi�1/M.�mj
ti /C .mj �mj�1 C 1/M.�mj

tj /

!
� 1 � "jC1;

so the use of (7) yields
jX
iD1

.mi �mi�1/M.ti / > 1 � 2"jC1: (9)

We put

xj D

jX
iD1

mi�1X
kDmi�1

tiek

and notice that, by the definition of mj ,
1=�mj�1 > kxj k � 1=�mj

� Atj : (10)

We have inductively constructed a sequence fxj g � hM given by the formula above, such that kxj k < 1 and (9) holds for any
j 2 N. Choose any j > 1. Since kxj k < 1, it follows that

Pj
iD1.mi �mi�1/M.ti / < 1 and comparing this with (9) for j � 1

we obtain
.mj �mj�1/M.tj / < 2"j :

This implies that xj ! x 2 hM . Indeed, suppose K > 0. Let n 2 N be such that Kn � K. Then
1X
iDn

.mi �mi�1/M.Kti / �

1X
iDn

.mi �mi�1/M.Ki ti / �

1X
iDn

.mi �mi�1/CiM.ti / < 2

1X
iDn

"iCi <1

and so by the basic properties of hM the vector x D
P1
iD1

Pmi�1

kDmi�1
tiek belongs to hM . This means also that tj ! 0 and thus

from (10) we can conclude that kxk D limkxj k D 1. Moreover, the construction of xj (namely the choice of mj ) guarantees that
�k kPkxk < 1 for each k 2 N.

�

The following theorem is a strengthening of a theorem from [L1]. Leung’s statement is that the Orlicz sequence space hM does
not admit a LFC norm if M satisfies the condition below.

Theorem 35. Let M be a non-degenerate Orlicz function for which there exists a sequence ftng decreasing to 0 such that

sup
n

M.Ktn/

M.tn/
<1 for all 0 < K <1:

Then the Orlicz sequence space hM is not locally flat.

Proof. Suppose that there is a non-empty bounded A � hM which is LFD. Without loss of generality we may assume that
0 2 A � BX and A is LFD-Z, where Z D fspanfeig1iDnI n 2 Ng. (Since hM is c0-saturated by Theorem 16, it does not contain
`1. As feig is unconditional, it is shrinking by James’s theorem. Now consider T .A/, where T W X ! X is an equivalence
isomorphism of the bases fxig and feig from Corollary 25.)

Notice, that the vectors with coordinates in the set ftng [ f0g have the property of “bounded completeness”: If we havePk
iD1 tmi

ei
 � 1 for all k 2 N, where mi 2 N [ f0g are not necessarily distinct (we put t0 D 0), then

P1
iD1 tmi

ei converges
in hM . Indeed, it follows that

Pk
iD1M.tmi

/ � 1 for all k 2 N. For all 0 < K <1 and all k 2 N,

kX
iD1

M.Ktmi
/ � sup

n

M.Ktn/

M.tn/

kX
iD1

M.tmi
/ � sup

n

M.Ktn/

M.tn/
:

Consequently,
P1
iD1M.Ktmi

/ <1 for all 0 < K <1, and the sum
P1
iD1 tmi

ei converges in hM .
We construct a sequence fxkg � A by induction. Put x0 D 0 2 A and define natural numbers m0 D n0 D 1. If mk�1 2 N,

nk�1 2 N and xk�1 2 A are already defined, we put

Mk D f.m; n/ 2 N2
W m � mk�1; n > nk�1 and xk�1 C tmen 2 Ag:

As A is determined by some W 2 Z on a neighbourhood of xk�1, where W contains all en for n big enough, and tm ! 0, we can
see that Mk ¤ ;. Let .mk ; nk/ D minMk in the lexicographic ordering of N2 and put xk D xk�1 C tmk

enk
.

Since fxkg � A � BX and xk D
Pk
iD1 tmi

eni
, by the above argument xk ! x 2 hM . We can find ı > 0 so that A is

determined by some Z 2 Z on U.x; ı/. There is N 2 N such that feigi>N � Z. Because xk converges, we have mk !1 and
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so there is j 2 N such that xj 2 U.x; ı=2/, ktmj
e1k < ı=2, mj < mjC1 and nj > N . Then xj C tmj

enjC1 2 A and therefore
.mj ; nj C 1/ 2MjC1. But .mj ; nj C 1/ < .mjC1; njC1/, which is a contradiction.

�

In [L1], Leung constructed a c0-saturated Orlicz sequence space satisfying the condition in Theorem 35. Therefore, we have
the following corollary:

Corollary 36. Leung’s space is a separable c0-saturated Asplund space that is not locally flat.

The main construction of this paper is contained in the next theorem.

Theorem 37. Let M be a non-degenerate Orlicz function for which there exist sequence Fk � .0; 1� such that

(i) limk!1.supFk/ D 0,
(ii) there is a sequence Kk > 1 such that

lim
t!0C
t…Fk

M.Kkt /

M.t/
D1;

(iii) there is a K > 1 and a sequence Ck !1 such that M.Kt/ � CkM.t/ for all t 2 Fk .

Then there exists a C1-smooth LFC-fe�i g lattice bump function on the Orlicz sequence space hM .

Proof. Without loss of generality we may and do assume that M.1/ D 1 (i.e. ke1k D 1) and Ck � C1 > 0 for any k 2 N.
For each t 2 Fk n f0g choose "kt > 0 such that M.s/ < 2M.t/ and t=2 < s < 2t if js � t j < "kt . Let us define sets

Gk D
S
t2Fknf0g

.t � "kt ; t C "
k
t /. Then each Gk is open, Gk � . Fk n f0g/ and supGk � 2 supFk . Moreover, for any s 2 Gk the

choice of an appropriate t 2 Fk n f0g from the definition of Gk yields M.2Ks/ > M.Kt/ � CkM.t/ > CkM.s/=2 (using (iii)
and the continuity of M ). So, if we multiply K by 2 and each Ck by 1

2
and denote these new constants K and Ck again to avoid

carrying unnecessary factors, we have

lim
k!1

.supGk/ D 0; (11)

M.Kt/ � CkM.t/ for all t 2 Gk . (12)

Let us define a sequence of continuous functions 'k on Œ0;C1/ such that 0 � 'k.t/ � t , 'k.t/ D 0 for t 2 Fk and
'k.t/ D t for t … Gk , and a mapping �k W hM ! hM by �k.x/ D

�
'k.jxi j/

�
for x D .xi / 2 hM . (We can take for example

'k.t/ D t dist.t; Fk/=
�
dist.t; Fk/C dist.t;R nGk/

�
for t > 0 and 'k.0/ D 0.)

Fix k 2 N.
First, observe that the mapping �k W hM ! hM is continuous: Choose x 2 hM and " > 0 and find n 2 N such that kRnxk < "

8
.

As 'k is continuous, there is ı > 0 such that
ˇ̌
jxi j � jyi j

ˇ̌
< ı implies

ˇ̌
'k.jxi j/ � 'k.jyi j/

ˇ̌
< "

2n
for all 1 � i � n. We haveˇ̌

jxi j � jyi j
ˇ̌
� jxi � yi j D k.x � y/ieik � kx � yk. (The last inequality uses the fact that the norm k�k is a lattice norm.) Thus,

whenever kx � yk < minfı; "
4
g,

k�k.x/ � �k.y/k � kPn.�k.x/ � �k.y//k C kRn.�k.x/ � �k.y//k

�

nX
iD1

ˇ̌
'k.jxi j/ � 'k.jyi j/

ˇ̌
C kRn�k.x/k C kRn�k.y/k <

"

2
C kRnxk C kRnyk

�
"

2
C kRnxk C kRnxk C kRn.x � y/k <

"

2
C
"

8
C
"

8
C
"

4
D ":

The third and the fifth inequality follow again from the fact that the norm k�k is lattice.

Claim 1. There is a non-increasing sequence f�kng � R satisfying �kn � 2 and limn!1 �
k
n D 1, such that for each x 2 hM for

which �k.x/ ¤ 0 there is ı > 0 and n0 2 N such that for any y 2 U.x; ı/ we have

�kn�
�
Pn1�k.y/

�
> �

�1�k.y/� for all n � n0:

We will construct the sequence �kn as follows: If .0; a/ � Fk for some a > 0, then any non-increasing sequence �kn ! 1 such
that 1 < �kn � 2 for all n 2 N will do. Indeed, then there is n0 2 N such that jxi j < a=2 for i � n0 and hence 1�k.y/ D Pn0

1�k.y/
whenever kx � yk < a=2.

Otherwise, put bn D inf
n
M.Kk t/
M.t/

I 0 < t �

q
M�1. 1

n
/; t … Fk

o
. By our assumption, bn <1 for all n 2 N. Notice, that bn is

non-decreasing and, by (ii), bn ! 1. Define �kn D min
˚
2; .1 � b

�1=2
n /�1

	
. It is trivial to check that �kn is non-increasing and

�kn ! 1.
Define a mapping Qk W hM ! hM by Qk.x/i D jxi j if jxi j … Fk , Qk.x/i D 0 otherwise.
Now choose x 2 hM for which �k.x/ ¤ 0. By Lemma 33 there is 0 < ı < 1

2Kk
such that �.�k.y// > 1

2
�.�k.x// if

kx � yk < ı. Find n0 2 N such that �kn D .1 � b
�1=2
n /�1, b�1=2n < 1

2
�.�k.x//, kRnxk < 1

2Kk
and M�1. 1

n
/ � 1=.kxk C ı/2
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for n � n0. Fix n � n0 and y 2 hM such that kx � yk < ı. Using Lemma 31(b) and the fact that the canonical norm on hM is a
symmetric lattice norm, we haveRn2Qk.y/ � kRnQk.y/k � kRnyk � kRnxk C kRn.x � y/k < 1

Kk
: (13)

As
P1
iD1M

�2Qk.y/i= kyk� �P1iD1M.jyi j = kyk/ D �.y= kyk/ D 1 and the sequence 2Qk.y/i is non-increasing, it follows

that 2Qk.y/i= kyk �M�1.1i / for any i 2 N. From the definition of n0 we obtain 2Qk.y/i � kykM�1.1i / � .kxkCı/M�1.1i / �q
M�1.1

i
/ for i � n0. Notice further that 2Qk.y/i … Fk for any i 2 N, thus by the definition of bn and (13) we have

1 > �
�
KkRn2Qk.y/

�
D

X
i>n

M
�
Kk2Qk.y/i

�
�

X
i>n

biM
�2Qk.y/i� � bnX

i>n

M
�2Qk.y/i�;

which together with the easily checked inequality 1�k.y/i �2Qk.y/i for any i 2 N impliesX
i>n

M
�1�k.y/i� �X

i>n

M
�2Qk.y/i� � 1

bn
:

Notice that by the definition of ı and n0 and by the symmetry of � we have �.1�k.y// > b�1=2n and therefore (use this fact for the
second inequality)

�
�
Pn1�k.y/

�
D

nX
iD1

M
�1�k.y/i� � 1X

iD1

M
�1�k.y/i� � 1

bn
D �

�1�k.y/� � 1

bn
> .1 � b�1=2n /�

�1�k.y/� D 1

�kn
�
�1�k.y/�;

which proves the claim.

Choose an arbitrary sequence fkg � R decreasing to 1. Let us define a sequence of functions gk W hM ! R by

gk.x/ D
1

Ck
C sup

n
kCn�

k
n�
�
Pn1�k.x/

�
:

Claim 2. Each gk is a LFC-fe�i g function on fx 2 hM ; �k.x/ ¤ 0g and continuous on hM .

Indeed, for a fixed k 2 N and x 2 hM , �k.x/ ¤ 0, choose an appropriate ı and n0 from Claim 1. Let N � n0 be such that
kCn�

k
n < kCn0

whenever n > N . Then for y 2 U.x; ı/ and n > N we have

kCn0
�kn0

�
�
Pn0

1�k.y/
�
> kCn�

k
n�
�1�k.y/� � kCn�kn��Pn1�k.y/�

and hence

gk.y/ D
1

Ck
C max
1�n�N

kCn�
k
n�
�
Pn1�k.y/

�
: (14)

By Lemma 32 there is a neighbourhood V of �k.x/ and a finite A � N such that the function max1�n�N kCn�kn�.Pnb́/ depends
only on fe�i gi2A on V . But since �k is continuous, there is a neighbourhood U of x, U � U.x; ı/, such that �k.U / � V . Further,
as �k.y/i D �k.´/i whenever yi D ´i for any i 2 N, the function gk depends only on fe�i gi2A on U .

Moreover, each gk is continuous on hM : Using the continuity of �k , Lemma 31(d) and (14) we can see that gk is continuous
on fx 2 hM ; �k.x/ ¤ 0g. On the other hand,

1

Ck
� gk.x/ �

1

Ck
C k�

k
1�
�
�k.x/

�
;

and the continuity of gk at any x with �k.x/ D 0 follows from the continuity of �k and the properties of �.

Notice further that, since � is lattice,

gk.x/ �
1

Ck
C k�

k
1�.x/; (15)

and as gk.x/ � 1
Ck
C kCn�

k
n�
�
Pn 1̊k.x/

�
for each n 2 N, the continuity of � implies

gk.x/ �
1

Ck
C �

�
�k.x/

�
; (16)

for any x 2 hM and any k 2 N.

Claim 3. For each x 2 hM there is ı > 0 and k0 2 N such that for any y 2 U.x; ı/ and k � k0 we have

�.y/ <
1

Ck
C �

�
�k.y/

�
:
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Indeed, choose an arbitrary x 2 hM . Let n 2 N be such that kRnxk < 1
3K

and 0 < ı < 1
3K

be such that moreover
ı � 1

2
minfjxi j I xi ¤ 0; i � ng if Pnx ¤ 0. Pick any y 2 hM for which kx � yk < ı. Notice that if jyi j < ı then either xi D 0

or i > n. Let A1 D fi I xi D 0g, A2 D fi I i > ng. Then

kPA1[A2
yk � kPA1

yk C kRnyk � kPA1
.y � x/k C kRnxk C kRn.x � y/k <

1

K
:

Therefore we have
P
jyi j<ı

M
�
K jyi j

�
< 1. By (11) we can find k0 2 N such that Gk � .0; ı/ for all k � k0 and hence, using (12),X

jyi j2Gk

M
�
jyi j

�
<

1

Ck
for all k � k0:

It follows that, for any y 2 U.x; ı/ and k � k0,

�.y/ D

1X
iD1

M
�
jyi j

�
D

X
jyi j2Gk

M
�
jyi j

�
C

X
jyi j…Gk

M
�
jyi j

�
D

X
jyi j2Gk

M
�
jyi j

�
C

X
jyi j…Gk

M
�
�k.y/i

�
<

1

Ck
C

1X
iD1

M
�
�k.y/i

�
D

1

Ck
C �

�
�k.y/

�
:

Finally let us define a function g W hM ! R by

g.x/ D sup
k

kgk.x/:

Choose 0 ¤ x 2 hM and find ı and k0 from Claim 3. Since � is continuous, we may also assume that �.y/ � �.x/=2 if
kx � yk < ı. There is N 2 N such that 2k=.�.x/Ck/C 2k�

k
1 < k0

for k > N . Then for any y 2 U.x; ı/ and k > N we have
(using first (15), then the definition of N , Claim 3 and finally (16))

kgk.y/ �
k

Ck
C 2k�

k
1�.y/ < k0

�.y/ <
k0

Ck0

C k0
�
�
�k0

.y/
�
� k0

gk0
.y/: (17)

This means that
g.y/ D sup

k

kgk.y/ D max
k�N

kgk.y/ (18)

for y 2 U.x; ı/. In particular, since each gk is continuous on hM , it follows that g is continuous on hM n f0g. On the other hand,
for any y 2 hM ,

1

C1
� 1g1.y/ � g.y/ �

1

C1
C 221 �.y/;

(the last inequality follows from (15)) and the continuity of � implies that g is continuous at 0 and hence on the whole of hM .
Let us define a set D D fx 2 hM ; g.x/ >

1

C1
g. Choose any x 2 D and find an appropriate N and ı for this x as above. Let

A D fk W 1 � k � N; �k.x/ ¤ 0g. If k 2 f1; : : : ; N g n A, then

kgk.x/ D
k

Ck
�
1

C1
< g.x/:

By the continuity of all �k , gk and g, there is a neighbourhood U of x, U � U.x; ı/, such that �k.y/ ¤ 0 for k 2 A and
kgk.y/ < g.y/ for k 2 f1; : : : ; N g n A whenever y 2 U . Thus, by (18), g.y/ D maxk2A kgk.y/ for y 2 U . Since each gk ,
k 2 A, is LFC on U , so is g. Therefore g is LFC on D.

From the last two inequalities in (17) we can see that g.x/ > �.x/ for any x 2 hM . Thus g.x/ > kxk on fx 2 hM I kxk � 1g
and we can compose g with a suitable real continuous function to obtain a desired continuous LFC bump. To finish the proof, it
remains to apply Theorem 30.

�

Theorem 38. There is a non-degenerate Orlicz function M such that lim inft!0C
M.Kt/
M.t/

<1 for anyK > 1, yet the correspond-
ing Orlicz sequence space hM admits a C1-smooth LFC-fe�i g lattice bump.

Proof. Suppose we have a sequence bn � 1, n � 0. For n D 0; 1; 2; : : : , put an D
Qn
mD0 b

�1
m and let M.t/ be a piecewise linear

continuous function on Œ 0;1/, such that M.0/ D 0, M 0.t/ D an for 2�.nC1/ < t < 2�n and M 0.t/ D 1 for t > 1. Clearly, this
is a non-degenerate Orlicz function and the constants bn determine the ratio of the slopes of M on the two consecutive dyadic
intervals. Suppose that j 2 N [ f0g and 2�.nC1/ � t � 2�n for some n � j . Then

2j�n�2an�jC1 �M.2
j�n�1/ �M.2j t / �M.2j�n/ � 2j�nan�j :

Hence, for n � j � 2,

2j�2
nY

mDn�jC2

bm �
M.2j t /

M.t/
� 2jC2

nC1Y
mDn�jC1

bm: (19)

If Fk is chosen to be
S
n2Ik

Œ2�.nC1/; 2�n/ for some Ik � N, then for conditions (i) to (iii) in Theorem 37 to hold, it is sufficient
to require
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(a) lim
k!1

min Ik D1,

(b) For each k 2 N, there exists jk 2 N such that lim
n!1
n…Ik

maxfbn�jk
; : : : ; bng D 1,

(c) lim
k!1

min
n2Ik

bn D1.

Indeed, (a) implies (i). If t 2 .0; 1/ n Fk , then there is n … Ik such that t 2 Œ2�.nC1/; 2�n/ and thus (19) together with (b) implies
(ii) for Kk D 2jkC2. Finally, (19) together with (c) implies (iii) for K D 4 and Ck D minn2Ik

bn. On the other hand, condition
(d) lim inf

n!1
maxfbn�j ; : : : ; bng <1 for all j 2 N

with (19) ensures that lim inft!0C
M.Kt/
M.t/

<1 for any K > 1.
Now we construct a sequence bn � 1, n � 0 and a sequence Ik � N satisfying conditions (a) to (d). Choose a non-decreasing

sequence fcng � R such that cn � 1 and cn !1. For i D 0; 1; 2; : : : , j D 0; : : : ; i and k D 0; : : : ; j C 1, let

n.i; j; k/ D

i�1X
lD0

lC1X
mD1

.mC 1/C

jX
mD1

.mC 1/C k

and define fbng1nD0 by bn.i;j;0/ D ci and bn.i;j;k/ D cj for k D 1; : : : ; j C 1. The sequence fbng fills a triangular table, where the
index n D n.i; j; k/ is interpreted as follows: i counts the rows, by j we index groups of columns, where the j th group consists
of j C 2 columns, and k is an index of a column in the j th group. So we have the following table

b0 b1
b2 b3 b4 b5 b6
b7 b8 b9 b10 b11 b12 b13 b14 b15
b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29
. . . . . .

with the values
c0 c0
c1 c0 c1 c1 c1
c2 c0 c2 c1 c1 c2 c2 c2 c2
c3 c0 c3 c1 c1 c3 c2 c2 c2 c3 c3 c3 c3 c3
. . . . . .

For any j 2 N we have maxfbn.i;j;1/; : : : ; bn.i;j;jC1/g D cj for all i � j and (d) is clearly satisfied.

Now let Ik D
1S

mDk�1

1S
iDm

fn.i;m; 1/; : : : ; n.i;m;mC 1/g for k 2 N, i.e. Ik consists of all the columns in the table starting with

the .k�1/th group but without the first column in each group. Condition (a) obviously holds. If n.i; j; l/ … Ik , then l � j C1 < k
or l D 0 but in both cases maxfbn.i;j;l/�kC1; : : : ; bn.i;j;l/g � bn.i;j;0/ D ci and hence (b) is satisfied. Finally, minn2Ik

bn D ck�1
implies (c).

�
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[F–Z] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler, Functional analysis and infinite dimensional geometry, CMS Books in

Mathematics 8, Springer-Verlag, 2001.
[FZ] M. Fabian and V. Zizler, A note on bump functions that locally depend on finitely many coordinates, Bull. Austral. Math. Soc. 56 (1997), no. 3, 447–451.
[GPWZ] G. Godefroy, J. Pelant, J.H.M. Whitfield and V. Zizler, Banach space properties of Ciesielski-Pol’s C.K/ space, Proc. Amer. Math. Soc. 103 (1988),

no. 4, 1087–1093.
[GTWZ] G. Godefroy, S. Troyanski, J.H.M. Whitfield and V. Zizler, Smoothness in weakly compactly generated Banach spaces, J. Funct. Anal. 52 (1983), no. 3,

344–352.
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