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ABSTRACT. Every Lipschitz mapping from c0.� / into a Banach space Y can be uniformly approximated by Lipschitz mappings that are
simultaneously uniformly Gâteaux smooth and C1-Fréchet smooth.

The main result of this note is a construction of uniform approximations of Lipschitz mappings from c0.� / into a Banach
space Y , by means of Lipschitz mappings that are also uniformly Gâteaux (UG) smooth and C1-Fréchet differentiable. We also
construct an equivalent UG and C1-Fréchet smooth renorming of c0.� /. Finally, we construct an example of a convex, even,
Lipschitz and UG-smooth separating function, such that the Minkowski functional of its sub-level set is not UG-smooth. The
first two results answer problems posed in [FMZ]. An example of the implicit function method violating UG smoothness was
lacking in the literature. Its existence is not surprising to the specialists, as the known constructions of UG renormings always take
a detour around this otherwise standard method of obtaining smooth renormings.

Let us recall that all Banach spaces admitting a UG-smooth bump function are in particular weak Asplund spaces by a
fundamental result of Preiss, Phelps and Namioka in [PPN] (see also [F] or [BL]). However, the additional uniformity of the
derivatives leads to a considerably stronger theory, with several characterisations of Banach spaces admitting a UG bump function
(or a renorming). In particular, a Banach space admits an equivalent UG renorming if and only if its dual ball is a uniform Eberlein
compact [FGZ]. For basic properties of UG smoothness we refer to [DGZ] and [F–Z]. To shed some light on the significance of
our results, let us briefly summarise some of the more recent results concerning UG smoothness, defined below (for simplicity we
assume that the domain is a whole Banach space X ).

It is shown in [LV] that a continuous UG-smooth real function on a Banach space X is locally Lipschitz. Moreover, if the
function is uniformly continuous (or bounded), then it is globally Lipschitz. Thus some uniformity (Lipschitz) condition is in
some sense also necessary for a mapping to be UG approximable. Tang [T] has shown that the existence of a UG bump function
on a Banach space implies the existence of an equivalent UG renorming (analogous statement for Gâteaux smooth bumps is
false, see [H]), and used this fact to show that every convex function on such a space is uniformly approximable by convex and
UG-smooth functions on bounded sets. The more general problem of approximating all Lipschitz functions seems to be still open.
One of the difficulties is that the standard approach to constructing smooth approximations by using smooth partitions of unity
appears to be failing (loss of uniformity). In this regard let us mention that in the stronger uniformly Fréchet case it was shown by
John, Toruńczyk and Zizler [JTZ] that the UF-smooth partitions of unity always exist provided the space has a UF bump function.
However, the existence of UF approximations of Lipschitz functions seems to be open.

In the separable setting, Fabian and Zizler [FZ] were able to combine the best Fréchet smoothness of the space in question
together with the UG condition (recall that every separable Banach space has a UG renorming). Namely, if a separable Banach
space admits a C k-Fréchet smooth norm, then it admits also a norm which is simultaneously C k-Fréchet smooth and UG. The
techniques used in their paper are strongly separable in nature, which leads to the natural question of what happens in the general
case. This is the source of the questions asked in [FMZ], resolved in our note. Let us now proceed with the preliminaries to our
results.

For an arbitrary set A, we denote its cardinality by jAj. For n 2 N, �n denotes the Lebesgue measure on Rn.
For a metric space .X; �/, we denote B.x; r/ D fy 2 X I �.x; y/ � rg and U.x; r/ D fy 2 X I �.x; y/ < rg the closed

and open ball in X centred at x 2 X with radius r � 0. Let A � X . A neighbourhood U � X of A is called an r-uniform
neighbourhood if there is r > 0 such that

S
x2A U.x; r/ � U . A neighbourhood is called a uniform neighbourhood if it is

r-uniform for some r > 0.
For F � � we denote the associated projection in c0.� / by PF , i.e. PF x D

P
2F e

�
 .x/e where x 2 c0.� /. By c00.� /

we denote the linear subspace of c0.� / consisting of finitely supported vectors. The canonical supremum norm on c0.� / will be
denoted by k�k.

Let X and Y be normed linear spaces, ˝ � X be open and f W ˝ ! Y . We will denote the directional derivative of f at
x 2 ˝ in the direction h 2 X by Dhf .x/ D limt!0

1
t
.f .x C th/ � f .x//. If f is Gâteaux differentiable for all x 2 ˝ (i.e.

Dhf .x/ exists for all h 2 X and h 7! Dhf .x/ is a bounded linear operator) and moreover for all fixed h 2 X the limit defining
Dhf .x/ is uniform in x 2 ˝ we say that f is uniformly Gâteaux differentiable (UG) on ˝.

We denote by C1.X; Y / the space of all C1-Fréchet smooth mappings from X into Y .
We are now ready to formulate the main results of our note.
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Theorem 1. Let � be an arbitrary set, Y be a Banach space, f W c0.� / ! Y be an L-Lipschitz mapping, and let " > 0.
Then there is an L-Lipschitz mapping g 2 C1.c0.� /; Y / which is uniformly Gâteaux differentiable and such that it satisfies
supc0.� /

kf .x/ � g.x/k � ".

Theorem 2. For any set � , c0.� / admits an equivalent norm which is simultaneously C1-smooth and uniformly Gâteaux
differentiable.

Theorem 1 is an immediate consequence of the following theorem.

Theorem 3. Let � be an arbitrary set, Y be a Banach space, M � c0.� /, U � c0.� / be a uniform neighbourhood of M ,
f W U ! Y be a uniformly continuous mapping with modulus of continuity ! and let " > 0. Then there is a mapping
g 2 C1.c0.� /; Y / which uniformly locally depends on finitely many coordinates such that supM kf .x/ � g.x/k � " and
g is uniformly continuous on M with modulus of continuity dominated by !. If f is moreover L-Lipschitz, then g is L-Lipschitz
on M and uniformly Gâteaux differentiable on IntM .

We will prove the theorems by using a few lemmata.

Lemma 4. Let X , Y be normed linear spaces, ˝ � X be open and f W ˝ ! Y be a Gâteaux differentiable mapping. If for each
h 2 X the mapping x 7! Dhf .x/ is uniformly continuous on ˝, then f is uniformly Gâteaux differentiable on ˝ provided that
˝ is convex; otherwise f is uniformly Gâteaux differentiable on any open V � ˝ satisfying dist.V;X n˝/ > 0. Conversely, if f
is uniformly Gâteaux differentiable and uniformly continuous on ˝, then for each h 2 X the mapping x 7! Dhf .x/ is uniformly
continuous on any A � ˝ satisfying dist.A;X n˝/ > 0.

Proof. Choose h 2 SX and " > 0, and find ı > 0 such that kDhf .x C th/ �Dhf .x/k < " for all x 2 ˝ and t 2 .�ı; ı/ such
that x C th 2 ˝. If ˝ is convex we set V D ˝ and � D ı, otherwise we let � D minfı; dist.V;X n˝/g. Fix x 2 V and define a
mapping g W I ! Y by g.t/ D f .x C th/ � tDhf .x/, where I D ft 2 .��; �/I x C th 2 ˝g. Notice that I is an open interval
containing 0 and g0.t/ D Dhf .x C th/ �Dhf .x/ for t 2 I . By the assumption, kg0.t/k � " for t 2 I , hence g is "-Lipschitz
on I , and so

1
t
.f .x C th/ � f .x// �Dhf .x/

 D 1
t
.g.t/ � g.0//

 � " for all t 2 I .
To prove the converse statement, choose h 2 X , h ¤ 0, a subset A � ˝ for which dist.A;X n ˝/ > 0, and " > 0. Find

0 < � < dist.A;X n ˝/= khk such that
�f .x C �h/ � f .x/�=� �Dhf .x/ < "

4
for any x 2 A. Let ı > 0 be such that

kf .x/ � f .y/k < � "
4

whenever x; y 2 A are such that kx � yk < ı. Then, for such x; y, we have

kDhf .x/ �Dhf .y/k <
"

2
C
1

�
kf .x C �h/ � f .x/ � f .y C �h/C f .y/k < ":

ut

Lemma 5. Let X and Y be normed linear spaces, H be a dense subset of X , ˝ � X be open and f W ˝ ! Y be a Gâteaux
differentiable Lipschitz mapping such that for each h 2 H the mapping x 7! Dhf .x/ is uniformly continuous on ˝. Then the
mapping x 7! Dhf .x/ is uniformly continuous on ˝ for every h 2 X .

Proof. Let L be a Lipschitz constant of f . Pick an arbitrary h 2 X and let " > 0. Find h0 2 H such that kh � h0k < "
4L

. By the
uniform continuity of Dh0

f .x/ there is ı > 0 such that kDh0
f .x/ �Dh0

f .y/k < "
2

whenever x; y 2 ˝, kx � yk < ı. Then

kDhf .x/ �Dhf .y/k � kDh0
f .x/ �Dh0

f .y/k C kDh�h0
f .x/ �Dh�h0

f .y/k <
"

2
C 2Lkh � h0k < ";

whenever x; y 2 ˝, kx � yk < ı.
ut

Lemma 6. Let X be a normed linear space, k 2 N [ f1g, g W X ! R be a C k-smooth, UG, Lipschitz, even and convex function
that is separating (i.e. there is an r > 0 such that infx2rSX

jg.x/ � g.0/j > 0). Then X admits an equivalent C k-smooth UG
norm.

Proof. As shown in the Example below, UG smoothness does not, in general, survive the standard use of the implicit function
theorem (Minkowski functional). To be able to use the Minkowski functional of some sub-level set of g, we need to gain more
control over g0.x/x. To this end we introduce a transformation, the idea of which comes from [FZ]. Basically, we construct a
function that is “primitive” to g in a sense, so that its derivative is g back again (more or less), hence Lipschitz. (For a more
detailed exposition of the method we refer to [FZ].) So, define f W X ! R by

f .x/ D

Z
Œ0;1�

g.tx/ d�.t/:

Let L be the Lipschitz constant of g. It is easy to check that f is L=2-Lipschitz, even and convex.
Without loss of generality we may assume that g.0/ D 0. By the convexity of g and the fact that g is even, g.x/ � 0 for x 2 X .

Since g is separating, there are r > 0 and a > 0 such that g.x/ � a for all x 2 rSX . Hence g.tx/ � a � Lr.1 � t / whenever
t 2 Œ0; 1� and kxk D r . It follows that

f .x/ �

1Z
1�a=.Lr/

�
a � Lr.1 � t /

�
d�.t/ D

a2

2Lr
D b for any x 2 rSX . (1)
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Let x 2 X . Using the compactness of the set ftxI t 2 Œ0; 1�g and the continuity of g0, we can find a neighbourhood U of x
such that g0.ty/ is bounded for y 2 U and t 2 Œ0; 1�. Hence, using the theory of integration, we can check that f 2 C 1.U / and

f 0.x/h D

Z
Œ0;1�

g0.tx/.th/ d�.t/: (2)

By repeating the same argument it follows that f 2 C k.X/.
Using Lemma 4 and (2) we can see that the function x 7! f 0.x/h is uniformly continuous on X for any h 2 X .
Moreover, the function x 7! f 0.x/x is Lipschitz on X . Indeed, using the substitution t .1 C �/ D s we get f .x C �x/ DR

Œ0;1�
g.tx C t�x/ d�.t/ D 1

1C�

R
Œ0;1C��

g.sx/ d�.s/. Thus, using the continuity of g along the way,

f 0.x/x D lim
�!0

1

�

�
f .x C �x/ � f .x/

�
D lim
�!0

1

�

 �
1

1C �
� 1

� 1C�Z
0

g.tx/ d�.t/C

1C�Z
1

g.tx/ d�.t/

!

D lim
�!0

�1

1C �

1C�Z
0

g.tx/ d�.t/C lim
�!0

1

�

1C�Z
1

g.tx/ d�.t/ D g.x/ �

1Z
0

g.tx/ d�.t/ D g.x/ � f .x/:

Since both f and g are L-Lipschitz, the function x 7! f 0.x/x is 2L-Lipschitz. Clearly, f .0/ D 0. So, the convexity of f implies

f 0.x/x � f .x/ for any x 2 X . (3)

Using the convexity of f , the estimate (1) and the fact that f .0/ D 0, we obtain that f .x/ > b whenever kxk > r . It follows
that B D fx 2 X I f .x/ � bg is a closed absolutely convex bounded set that contains a neighbourhood of 0. The Minkowski
functional � of the set B is therefore an equivalent norm on X and �.x/ D 1 if and only if f .x/ D b.

Put M D X � .0;C1/ and define F W M ! R by F.x; y/ D f .x
y
/� b. It is obvious that F 2 C k.M/. Pick any 0 ¤ x 2 X .

Then .x; �.x// 2M , F.x; �.x// D 0, and

@F

@y
.x; �.x// D f 0

�
x

�.x/

��
�

x

�.x/2

�
D �

1

�.x/
f 0
�

x

�.x/

��
x

�.x/

�
:

From (3) it follows that @F
@y
.x; �.x// � �b=�.x/. Therefore we can use the Implicit Function Theorem to conclude that on some

neighbourhood of x, � is a C k-smooth function. Hence � is a C k-smooth norm.
Finally, we claim that the function x 7! �0.x/h is uniformly continuous on AR D X n B.0;R/ for any h 2 X and any R > 0,

which according to Lemma 4 means that the norm � is UG.
Since F

�
x; �.x/

�
D 0 for any 0 ¤ x 2 X , it follows that

�
F.x; �.x//

�0
D 0. A simple computation yields

�0.x/ D
f 0
�

x
�.x/

�
f 0
�

x
�.x/

� �
x
�.x/

� :
Fix any R > 0 and h 2 X . Denote S D fx 2 X I �.x/ D 1g. As the mapping  W AR ! S ,  .x/ D x=�.x/ is Lipschitz and
�0.x/ D �0. .x//, it is enough to show that x 7! �0.x/h is uniformly continuous on S . Let " > 0. Find 0 < ı < " such that
jf 0.x/h � f 0.y/hj < " whenever kx � yk < ı. Then, for any x; y 2 S , kx � yk < ı we haveˇ̌

�0.x/h � �0.y/h
ˇ̌
D

ˇ̌̌̌
f 0.x/h

f 0.x/x
�
f 0.y/h

f 0.y/y

ˇ̌̌̌
�

1

jf 0.x/xj

ˇ̌
f 0.x/h � f 0.y/h

ˇ̌
C jf 0.y/hj

ˇ̌̌̌
1

f 0.x/x
�

1

f 0.y/y

ˇ̌̌̌
�
"

b
C
L

2
khk
jf 0.x/x � f 0.y/yj

jf 0.x/xj jf 0.y/yj
�
"

b
C
L

2
khk

2L kx � yk

b2
< "

�
1

b
C
L2

b2
khk

�
:

ut

Let X be a topological vector space, ˝ � X an open subset, E be an arbitrary set, M � X� and g W ˝ ! E. We say that g
depends only on M on a set U � ˝ if g.x/ D g.y/ whenever x; y 2 U are such that f .x/ D f .y/ for all f 2M . We say that
g depends locally on finitely many coordinates from M (LFC-M for short) if for each x 2 ˝ there are a neighbourhood U � ˝
of x and a finite subset F �M such that g depends only on F on U . We say that g depends locally on finitely many coordinates
(LFC for short) if it is LFC-X�.

Let U 2 �.0/ be a neighbourhood of zero in X . We say that g depends U -uniformly locally on finitely many coordinates from
M (U -ULFC-M for short) if for each x 2 ˝ there is a finite subset F �M such that g depends only on F on .x C U/ \˝.

Lemma 7. Let � be an arbitrary set, Y be any Banach space, and ˚ W c0.� /! Y be a mapping that is U.0; r/-ULFC-fe� g2�
for some r > 0. Further, let M � c0.� /, ˝ � c0.� / be an open uniform neighbourhood of M , ˚ be uniformly continuous
on ˝ with modulus of continuity !, let ˚ D 0 on c0.� / n˝, and let " > 0. Then there is a U.0; r

2
/-ULFC-fe� g2� mapping

	 2 C1.c0.� /; Y / such that supM k˚.x/ � 	.x/k � ", 	 is uniformly continuous on M with modulus of continuity dominated
by !, and the mapping x 7! 	 0.x/h is uniformly continuous on M for any h 2 c00.� /. If ˚ is even, then so is 	 . If moreover
Y D R and ˚ is convex, then so is 	 .
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Proof. Let � > 0 be such that ˝ is an �-uniform neighbourhood of M and find 0 < ı < minf�; r
2
g such that !.ı/ < ". Choose '

to be an even C1-smooth non-negative function on R such that supp' � Œ�ı; ı� and
R

R ' D 1. We denote C D
R

R j'
0.t/j d�.

Let F � 2� be a partially ordered set of non-empty finite subsets of � , ordered by inclusion. For any F 2 F , we define the
mapping 	F W c0.� /! Y by

	F .x/ D

Z
RjF j

˚

�
x �

X
2F

te

� Y
2F

'.t / d�jF j.t/;

where we integrate in the Bochner sense. Notice, that the integral is well-defined, since ˚ D 0 on the closed set c0.� / n˝ and ˚
is uniformly continuous on ˝.

The net f	F gF converges on c0.� / to a mapping 	 W c0.� /! Y . In fact, we claim that for any x 2 c0.� /, there is an F 2 F

such that 	F .y/ D 	H .y/ for any F � H 2 F and any y 2 U.x; r
2
/. Indeed, for a fixed x 2 c0.� / let F 2 F be such that

˚ depends only on fe� g2F on U.x; r/ and kx � PF xk < r
2

. Choose any y 2 U.x; r
2
/ and H 2 F , H � F . Suppose that

t 2 Œ�
r
2
; r
2
� for all  2 H . Then

x � �y �P2H te
� < r and consequently ˚

�
y �

P
2H te

�
D ˚

�
y �

P
2F te

�
.

Thus, by Fubini’s theorem,

	H .y/ D

Z
Œ�ı;ı�jH j

˚

�
y �

X
2H

te

� Y
2H

'.t / d�jH j.t/

D

Z
Œ�ı;ı�jF j

˚

�
y �

X
2F

te

� Y
2F

'.t / d�jF j.t/
Y

2HnF

Z
Œ�ı;ı�

'.t / d� D 	F .y/:

Moreover, kx � PF yk � kx � PF xk C kPF k kx � yk < r and so we can easily see that 	F .y/ D 	F .PF y/. The mapping
	F �PF c0.� / is in fact a finite-dimensional convolution with a smooth kernel on RjF j, and so 	F is a C1-smooth mapping
on U.x; r

2
/.

The mapping 	 is therefore U.0; r
2
/-ULFC-fe� g2� and 	 2 C1.c0.� /; Y /, as for any x 2 c0.� /, 	 D 	F ı PF on

U.x; r
2
/ for some F 2 F .

To show that supM k˚.x/ � 	.x/k � " choose any x 2 M � ˝. Let F 2 F be such that 	.x/ D 	F .x/. Notice thatx � �x �P2F te
� D P2F te

 � ı < � whenever t 2 Œ�ı; ı� for all  2 F . Hence x �
P
2F te 2 ˝ and

k˚.x/ � 	.x/k D k˚.x/ � 	F .x/k D


Z

RjF j

˚.x/
Y
2F

'.t / d�jF j.t/ �
Z

RjF j

˚

�
x �

X
2F

te

� Y
2F

'.t / d�jF j.t/


�

Z
Œ�ı;ı�jF j

˚.x/ � ˚�x �X
2F

te

� Y
2F

'.t / d�jF j.t/ �
Z

Œ�ı;ı�jF j

!.ı/
Y
2F

'.t / d�jF j.t/ D !.ı/ < ":

To see that the modulus of continuity of 	 on M is dominated by !, choose x; y 2 M and find F;H 2 F such that
	.x/ D 	F .x/ and	.y/ D 	H .y/. Then forK D F[H we have	.x/ D 	K.x/ and	.y/ D 	K.y/. As x�

P
2K te 2 ˝

and y �
P
2K te 2 ˝ whenever t 2 .��; �/ for all  2 K,

k	.x/ � 	.y/k D k	K.x/ � 	K.y/k �

Z
Œ�ı;ı�jKj

˚�x �X
2K

te

�
� ˚

�
y �

X
2K

te

� Y
2K

'.t / d�jKj.t/ � !
�
kx � yk

�
:

Similarly we can check that 	 is even if ˚ is even and 	 is convex under the additional assumptions that Y D R and ˚ is
convex.

We finish the proof by showing that the directional derivatives of 	 in the directions of c00.� / are uniformly continuous on M .
So first, choose any ˛ 2 � . For x; y 2M find F;H 2 F such that 	.x/ D 	F .x/ on U.x; r

2
/ and 	.y/ D 	H .y/ on U.y; r

2
/.

Put K D F [H [ f˛g. It is standard to show that

	 0K.x/e˛ D

Z
RjKj

˚
�
x �

X
2K

te

�
'0.t˛/

Y
2Knf˛g

'.t / d�jKj.t/:

Hence, similarly as above,	 0.x/e˛ � 	 0.y/e˛ � Z
RjKj

˚�x �X
2K

te

�
� ˚

�
y �

X
2K

te

� ˇ̌'0.t˛/ˇ̌ Y
2Knf˛g

'.t / d�jKj.t/

� !
�
kx � yk

� Z
R

ˇ̌
'0.t/

ˇ̌
d� D C!

�
kx � yk

�
:

(4)

Next, choose any h 2 c00.� / and x; y 2M . It follows from (4) that	 0.x/h � 	 0.y/h � X
2supph

	 0.x/.e� .h/e / � 	 0.y/.e� .h/e / � C!�kx � yk� X
2supph

ˇ̌
e� .h/

ˇ̌
D C khk`1

!
�
kx � yk

�
:

ut
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Proof of Theorem 3. Without loss of generality we may assume that U is open. Let r > 0 be such that U is an r-uniform open
neighbourhood of M and find 0 < � � r

2
such that !.�/ < "

2
. Define ' W R! R by '.t/ D maxf0; t � �g Cminf0; t C �g. Then

' is 1-Lipschitz and j'.t/ � t j � � for all t 2 R.
Further, define a mapping � W c0.� /! c0.� / by �.x/ D

P
2� '

�
e� .x/

�
e . (Notice that in fact � maps into c00.� /.) Then

� is 1-Lipschitz and k�.x/ � xk � � for all x 2 c0.� /. Moreover, we claim that � is U.0; �
2
/-ULFC-fe� g2� .

Indeed, fix x 2 c0.� / and find F � � , jF j < 1 such that kx � PF xk <
�
2

. Then for any y 2 U.x; �
2
/ we have

ky � PF yk < �. This means that if y; ´ 2 U.x; �
2
/ are such that e� .y/ D e

�
 .´/ for all  2 F , then '.e� .y// D 0 D '.e

�
 .´//

for all  2 � n F and of course '.e� .y// D '.e
�
 .´// for all  2 F . Hence �.y/ D �.´/, and so � depends only on fe� g2F on

U.x; �
2
/.

We extend f to the whole of c0.� / by f .x/ D 0 for x 2 c0.� / nU and put ˚ D f ı�. Clearly, the mapping ˚ W c0.� /! Y

is U.0; �
2
/-ULFC-fe� g2� . Put ˝ D ��1.U /. Then ˝ is an r

2
-uniform open neighbourhood of M in c0.� /. Indeed, choose

x 2 M and y 2 c0.� / such that kx � yk < r
2

. Then k�.y/ � xk � k�.y/ � yk C ky � xk < �C r
2
� r , which means that

�.y/ 2 U and so y 2 ˝.
Moreover, ˚ is uniformly continuous on ˝ with modulus of continuity dominated by !. To see this, choose any x; y 2 ˝.

Then �.x/; �.y/ 2 U and hence k˚.x/ � ˚.y/k � !
�
k�.x/ � �.y/k

�
� !

�
kx � yk

�
.

Finally, sup˝ kf .x/ � ˚.x/k � sup˝ !
�
kx � �.x/k

�
� !.�/ < "

2
, and Lemma 7 together with Lemma 5 and Lemma 4

finishes the proof.
ut

Proof of Theorem 2. Define a function ˚ W c0.� / ! R by ˚.x/ D maxf0; kxk � 1g. Then ˚ is a 1-Lipschitz convex even
function which is U.0; 1

2
/-ULFC-fe� g2� . (Notice that ˚ D k�k ı � as in the proof of Theorem 3 for � D 1.)

Let g 2 C1.c0.� // be a 1-Lipschitz convex even function with uniformly continuous directional derivatives produced by
Lemma 7 combined with Lemma 5, such that jg.x/ � ˚.x/j � 1 for all x 2 c0.� /. Then g is separating, as g.0/ � 1 and
g.x/ � 2 on 4SX . The function g is also UG by Lemma 4, and so we can finish by using Lemma 6.

ut

The technique used in the above proof can be used to strengthen the main result in [FHZ] on the existence of C1-Fréchet
smooth approximations of strongly lattice norms on c0.� /, by placing the additional UG smoothness requirement. We prefer to
omit the details of the proof.

Example. We will sketch a construction of a UG, Lipschitz, even and convex function on c0 that is separating, but the Minkowski
functional of its sub-level set is an equivalent norm on c0 that is not UG-smooth. The existence of such examples was since long
suspected by specialists (e.g. [FZ], [T]), but no explicit construction seems to be available in the literature.

For any n 2 N, let fn W c0 ! R and gn W c0 ! R be defined as

fn D e
�
1 C e

�
2n � e

�
2nC1;

gn D e
�
1 C

�
2 �

1

2n

�
e�2n C e

�
2nC1 � 1:

Let Qfn D fn � e�2n=4, Qgn D gn � e�2n=4, and further g.x/ D supnf Qfn.x/; Qgn.x/; kxk =4g and f .x/ D g.x/C g.�x/. It is easy
to see that f .0/ D 0, f is 8-Lipschitz, even, convex and separating. Further, for all n 2 N and w 2 c0, let

xn D e2n; yn D e2n C
1

2n
e2nC1;

Un.w/ D

�
x 2 c0I je

�
2n.x � w/j <

1

16n
;
ˇ̌
e�2nC1.x � w/

ˇ̌
<

1

16n
;
ˇ̌
e�j .x � w/

ˇ̌
<
1

16
for j 2 N n f2n; 2nC 1g

�
:

We can check that g.x/ D Qfn.x/ on Un.xn/, g.x/ D Qgn.x/ on Un.yn/, and g.�x/ D kxk =4 D e�2n.x/=4 on both Un.xn/ and
Un.yn/. Hence, f D fn on Un.xn/ and f D gn on Un.yn/.

Now for each n 2 N let 'n be an even C1-smooth non-negative function on R such that
R

R 'n D 1. Moreover, choose these
functions so that supp'1 � Œ� 1

32
; 1
32
�, supp'2n � Œ� 1

32n
; 1
32n

� and supp'2nC1 � Œ� 1
32n

; 1
32n

� for n 2 N. Similarly as in [FZ]
or [J] we can show that the function

F.x/ D lim
n!1

Z
Rn

f

�
x �

nX
jD1

tj ej

� nY
jD1

'j .tj / d�n.t/

is well defined for all x 2 c0 and that it is Lipschitz, even, convex, separating and UG.
Furthermore, notice that for each n 2 N, f is affine on both Un.xn/ and Un.yn/. Since the convolution of an affine function

with an even kernel is the same affine function again, there are neighbourhoods of xn and yn such that F D fn (or F D gn
respectively) on those neighbourhoods.
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Let � be the Minkowski functional of the set B D fx 2 c0I F.x/ � 1g. Then �.xn/ D 1 D �.yn/ for all n 2 N,
limn!1 kxn � ynk D 0, but

�0.xn/e1 D
F 0.xn/e1

F 0.xn/xn
D
f 0n.xn/e1

f 0n.xn/xn
D
1

1
D 1 and �0.yn/e1 D

F 0.yn/e1

F 0.yn/yn
D
g0n.yn/e1

g0n.yn/yn
D
1

2
:
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