A SIMPLER PROOF OF THE APPROXIMATION BY REAL ANALYTIC LIPSCHITZ FUNCTIONS

MICHAL JOHANIS

Abstract

A theorem in AFK asserts that on a real separable Banach space with separating polynomial every Lipschitz function can be uniformly approximated by real analytic Lipschitz function with a control over the Lipschitz constant. We give a simpler proof of this theorem.

Using ideas from [K], [$\overline{\mathrm{F}}$, and [HJ] we give a simpler proof of the following theorem from [AFK].
Theorem 1 (Azagra-Fry-Keener). Let X be a real separable Banach space with a separating polynomial. Then there is a constant $K \in \mathbb{R}$ such that for each $\varepsilon>0$ and any L-Lipschitz function $f: X \rightarrow \mathbb{R}$ there is a KL-Lipschitz function $g \in C^{\omega}(X)$ satisfying $\sup _{x \in X}|f(x)-g(x)| \leq \varepsilon$.

By $B(x, r)$ (resp. $U(x, r)$) we denote the closed (resp. open) ball centred at x with radius $r>0$. If we need to stress that the ball is taken in the space X we write $U_{X}(x, r)$. By \tilde{X} we denote the Taylor complexification of a real Banach space X. By $H(\Omega)$ we denote the set of all holomorphic functions defined on an open subset Ω of a complex Banach space.

The proof is divided into a few steps (Proposition 2, Proposition 4, and Lemma 6). We begin by introducing an auxiliary notion. Let X be a real Banach space and $\mathcal{U}=\left\{U_{x} ; x \in U_{x} \subset \tilde{X}, x \in X\right\}$ be a collection of open neighbourhoods in \tilde{X}. Let $A \subset X$. We say that a function $h: \bigcup U \rightarrow \mathbb{C}$ separates A with respect to U if
(S1) $h \upharpoonright_{X}$ maps into \mathbb{R},
(S2) $h(x) \geq 1$ whenever $x \in A$,
(S3) $|h(z)| \leq \frac{1}{4}$ whenever $z \in U_{x}, x \in X, \operatorname{dist}(x, A) \geq 1$.
Proposition 2. Let X be a real Banach space. Assume that there is $U=\left\{U_{x} ; x \in U_{x} \subset \tilde{X}, x \in X\right\}$ a collection of open neighbourhoods in \tilde{X} and $C>0$ such that for each $A \subset X$ there is a function $h_{A} \in H(\bigcup U)$ which separates A with respect to U and such that $h_{A} \upharpoonright_{X}$ is C-Lipschitz. Then for every $\varepsilon>0$ and every L-Lipschitz function $f: X \rightarrow \mathbb{R}$ there is a 10 CL-Lipschitz function $g \in C^{\omega}(X)$ satisfying $\sup _{x \in X}|f(x)-g(x)| \leq \varepsilon$.

For the proof we need the following technical lemma.
Lemma 3. There are functions $\theta_{n} \in H(\mathbb{C}), n \in \mathbb{N}$, with the following properties:
(T1) $\theta_{n} \upharpoonright_{\mathbb{R}}$ maps into $[0,1]$,
(T2) $\theta_{n} \upharpoonright_{\mathbb{R}}$ is 4-Lipschitz,
(T3) $\left|\theta_{n}(z)\right| \leq 2^{-n}$ for every $z \in \mathbb{C},|z| \leq \frac{1}{4}$,
(T4) $\left|\theta_{n}(x)-1\right| \leq 2^{-n}$ for every $x \in \mathbb{R}, x \geq 1$,
(T5) $\left|\left(\theta_{n} \upharpoonright_{\mathbb{R}}\right)^{\prime}(x)\right| \leq 2^{-n}$ for every $x \in \mathbb{R}, x \leq \frac{1}{2}$ or $x \geq 1$.
Proof of Proposition 2, Let us define a function $\hat{f}: X \rightarrow \mathbb{R}$ by $\hat{f}(x)=\frac{4}{\varepsilon} f\left(\frac{\varepsilon}{4 L} x\right)$. This function is obviously 1-Lipschitz. Denote $\hat{f}^{+}=\max \{\hat{f}, 0\}$ and $\hat{f}^{-}=\max \{-\hat{f}, 0\}$ and notice that both functions are again 1-Lipschitz. Next, let us define sets $A_{n}=\left\{x \in X ; \hat{f}^{+}(x) \geq n\right\}$ for $n \in \mathbb{N} \cup\{0\}$. Clearly, $A_{n} \subset A_{n-1}$ for all $n \in \mathbb{N}$, and using the 1-Lipschitz property of \hat{f}^{+}it is easy to check that

$$
\begin{equation*}
\operatorname{dist}\left(X \backslash A_{n}, A_{n+1}\right) \geq 1 \quad \text { for all } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Denote $h_{n}(z)=\theta_{n} \circ h_{A_{n}}$ for $n \in \mathbb{N}$. For each $n \in \mathbb{N}, h_{n} \in H(\bigcup U)$ and $h_{n} \upharpoonright_{X}$ is $4 C$-Lipschitz. Put $h^{+}=\sum_{n=1}^{\infty} h_{n}$.
Fix an arbitrary $x \in X$. Then there is $m \in \mathbb{N}$ such that $x \in A_{m-1} \backslash A_{m}$. Hence

$$
\begin{equation*}
x \in A_{n} \text { for } n<m \quad \text { and } \quad x \in X \backslash A_{n-1} \text { for } n>m \tag{2}
\end{equation*}
$$

From this, (1), (S3), and (T3) it follows that $\left|h_{n}(z)\right| \leq 2^{-n}$ for all $n>m$ and $z \in U_{x}$. Hence the sum in the definition of h^{+} converges absolutely uniformly on U_{x} and so $h^{+} \in H(\bigcup U)$. This together with (S11) and (T1) implies that $h^{+} \upharpoonright_{X} \in C^{\omega}(X)$.

Using (2), (S2) and (T4), (1], (S3) and (T3), and finally $m-1+h_{m}(x) \in[m-1, m]$ and $f^{+}(x) \in[m-1, m)$, we obtain

$$
\begin{aligned}
\left|h^{+}(x)-\hat{f}^{+}(x)\right| & =\left|\sum_{n=1}^{m-1} h_{n}(x)+h_{m}(x)+\sum_{n=m+1}^{\infty} h_{n}(x)-\hat{f}^{+}(x)\right| \\
& \leq \sum_{n=1}^{m-1}\left|h_{n}(x)-1\right|+\sum_{n=m+1}^{\infty}\left|h_{n}(x)\right|+\left|m-1+h_{m}(x)-\hat{f}^{+}(x)\right|<\sum_{n=1}^{m-1} 2^{-n}+\sum_{n=m+1}^{\infty} 2^{-n}+1<2 .
\end{aligned}
$$

Date: June 2010.
2000 Mathematics Subject Classification. 46B20, 46G20, 46T25.
Key words and phrases. approximation, real analytic, Lipschitz.
Supported by grants: the research project MSM 0021620839, A100190801.

Further, from (1) it follows that there is a neighbourhood U of x in X such that $U \subset X \backslash A_{m}$ and $U \subset A_{n}$ for $n<m-1$. Thus $\left|h_{A_{n}}(y)\right| \leq \frac{1}{4}$ for $n>m$ and $y \in U$, and $h_{A_{n}}(y) \geq 1$ for $n<m-1$ and $y \in U$. This together with (T5 implies $\left\|\left(h_{n} \upharpoonright_{X}\right)^{\prime}(y)\right\|=\left|\left(\theta_{n} \upharpoonright_{\mathbb{R}}\right)^{\prime}\left(h_{A_{n}}(y)\right)\right|\left\|\left(h_{A_{n}} \upharpoonright_{X}\right)^{\prime}(y)\right\| \leq 2^{-n} C$ for $n \in \mathbb{N} \backslash\{m-1, m\}$ and $y \in U$. Hence $\sum_{n=1}^{\infty}\left(h_{n} \upharpoonright_{X}\right)^{\prime}$ converges absolutely uniformly on U and so

$$
\left\|\left(h^{+} \upharpoonright_{X}\right)^{\prime}(x)\right\| \leq \sum_{n=1}^{\infty}\left\|\left(h_{n} \upharpoonright_{X}\right)^{\prime}(x)\right\| \leq \sum_{n \neq m} 2^{-n} C+\left\|\left(h_{m} \upharpoonright_{X}\right)^{\prime}(x)\right\|<C+4 C=5 C .
$$

Similarly we obtain an approximation of \hat{f}^{-}denoted by h^{-}. Put $h=h^{+}-h^{-}$. Then $h \upharpoonright_{X} \in C^{\omega}(X),|h(x)-\hat{f}(x)|<4$ for every $x \in X$, and $\left\|\left(h \upharpoonright_{X}\right)^{\prime}(x)\right\| \leq\left\|\left(h^{+} \upharpoonright_{X}\right)^{\prime}(x)\right\|+\left\|\left(h^{-} \upharpoonright_{X}\right)^{\prime}(x)\right\|<10 C$ for every $x \in X$.

Finally, let $g(x)=\frac{\varepsilon}{4} h\left(\frac{4 L}{\varepsilon} x\right)$ for $x \in X$. It is straightforward to check that g satisfies the conclusion of our proposition.

Let X be a set. A collection $\left\{\psi_{\alpha}\right\}_{\alpha \in \Lambda}$ of functions on X is called a supremal partition (sup-partition) if

- $\psi_{\alpha}: X \rightarrow[0,1]$ for all $\alpha \in \Lambda$,
- there is a $Q>0$ such that $\sup _{\alpha \in \Lambda} \psi_{\alpha}(x) \geq Q$ for each $x \in X$,
- for each $x \in X$ and for each $\varepsilon>0$ the set $\left\{\alpha \in \Lambda ; \psi_{\alpha}(x)>\varepsilon\right\}$ is finite.

Proposition 4. Let X be a real Banach space. Suppose that there is an open neighbourhood \hat{G} of X in \tilde{X} and a collection $\left\{\hat{\psi}_{n}\right\}_{n \in \mathbb{N}}$ of functions on \hat{G} with the following properties:
(P1) $\left\{\hat{\psi}_{n} \upharpoonright_{X}\right\}_{n \in \mathbb{N}}$ is a sup-partition on X,
(P2) the mapping $z \mapsto\left(a_{n} \hat{\psi}_{n}(z)\right)_{n \in \mathbb{N}}$ is a holomorphic mapping from \hat{G} into \tilde{c}_{0} for any $\left(a_{n}\right) \in \ell_{\infty}$,
(P3) there is $M>0$ such that each $\hat{\psi}_{n} \upharpoonright_{X}$ is M-Lipschitz,
(P4) there is $r>0$ such that for each $n \in \mathbb{N}$ there is $\hat{x}_{n} \in X$ such that $\hat{\psi}_{n}(x) \leq \frac{Q}{8}$ for $x \in X,\left\|x-\hat{x}_{n}\right\| \geq r$.
Then there is a collection \mathcal{U} of open neighbourhoods in \tilde{X} such that for each $A \subset X$ there is a function $h_{A} \in H(\bigcup \cup)$ which separates A with respect to U and such that $h_{A} \upharpoonright_{X}$ is C-Lipschitz, where $C=2 r \sqrt{2} M / Q$.

In the proof we use the following proposition.
Proposition 5. Let $q \geq 1$. There is an open set $W \subset \tilde{c}_{0}$ and a function $\mu \in H(W)$ with the following properties:
(M1) For every $w \in c_{0} \backslash\{0\}$ there is $\Delta_{w}>0$ such that $U_{\tilde{c}_{0}}\left(y, \Delta_{w}\right) \subset W$ for every $y \in c_{0}$ satisfying $|w| \leq|y| \leq q|w|$, where the inequalities are understood in the lattice sense.
(M2) $\mu(w) \geq 8$ for $w \in c_{0},\|w\| \geq 8$,
(M3) $|\mu(z)|<2$ for $z \in U_{\tilde{c}_{0}}\left(y, \Delta_{w}\right)$, where $y \in c_{0},\|y\| \leq 1$, and $w \in c_{0} \backslash\{0\},|w| \leq|y| \leq q|w|$,
(M4) $\mu \upharpoonright_{c_{0}}$ is $\sqrt{2}$-Lipschitz and maps into \mathbb{R}.
Proof of Proposition 4 Let W, μ, and Δ_{w} be as in Proposition 5 for $q=\frac{8}{Q}$. Further, we put $G=\frac{1}{2 r} \hat{G}, x_{n}=\frac{\hat{x}_{n}}{2 r}$, and $\psi_{n}(z)=\hat{\psi}_{n}(2 r z)$ for $z \in G$. Then the functions $\psi_{n} \upharpoonright_{X}$ are $2 r M$-Lipschitz and

$$
\begin{equation*}
\psi_{n}(x) \leq \frac{Q}{8} \quad \text { for } x \in X,\left\|x-x_{n}\right\| \geq \frac{1}{2} \tag{3}
\end{equation*}
$$

Denote $w(z)=\left(\psi_{n}(z)\right)_{n \in \mathbb{N}}$ for $z \in G$. By the continuity of the mapping w (which follows from (f2p), for each $x \in X$ there is an open neighbourhood U_{x} of x in \tilde{X} such that $U_{x} \subset G$ and $\|w(z)-w(x)\|<\Delta_{w(x)} / q$ whenever $z \in U_{x}$. (Notice that $w(x) \in c_{0} \backslash\{0\}$.) Put $U=\left\{U_{x} ; x \in X\right\}$.

Let $A \subset X$. For each $n \in \mathbb{N}$ put $b_{n}=q$ if $\operatorname{dist}\left(x_{n}, A\right) \leq \frac{1}{2}$ and $b_{n}=1$ otherwise. Choose $z \in \bigcup U$ and let $x \in X$ be such that $z \in U_{x}$. Then

$$
\begin{equation*}
\left\|\left(b_{n} \psi_{n}(z)\right)-\left(b_{n} \psi_{n}(x)\right)\right\|=\sup _{n \in \mathbb{N}}\left|b_{n}\left(\psi_{n}(z)-\psi_{n}(x)\right)\right| \leq q \sup _{n \in \mathbb{N}}\left|\psi_{n}(z)-\psi_{n}(x)\right|=q\|w(z)-w(x)\|<\Delta_{w(x)} \tag{4}
\end{equation*}
$$

and since $0 \leq w(x) \leq\left(b_{n} \psi_{n}(x)\right) \leq q w(x)$ in the lattice sense, from (M1] it follows that $\left(b_{n} \psi_{n}(z)\right) \in W$. Therefore we may define $h_{A}(z)=\frac{1}{8} \mu\left(\left(b_{n} \psi_{n}(z)\right)\right.$ for $z \in \bigcup U$ and (F2 implies that $h_{A} \in H(\cup U)$. Further, $h_{A} \upharpoonright_{X}$ is obviously C-Lipschitz.

Next we show that h_{A} separates A with respect to U. Clearly h_{A} has property (S1). Pick any $x \in A$. From (F1) and (3) it follows that $\sup \left\{\psi_{n}(x) ; n \in \mathbb{N}\right.$, $\left.\operatorname{dist}\left(x_{n}, A\right) \leq \frac{1}{2}\right\} \geq Q$. Therefore $\left\|\left(b_{n} \psi_{n}(x)\right)\right\| \geq q Q=8$ and consequently (M2) gives property (S2). Finally, to show ($\$ 3$ let $x \in X$ be such that $\operatorname{dist}(x, A) \geq 1$. Then, by $\sqrt[3]{ }), \psi_{n}(x) \leq \frac{Q}{8}$ for those $n \in \mathbb{N}$ for which dist $\left(x_{n}, A\right) \leq \frac{1}{2}$. Thus $\left\|\left(b_{n} \psi_{n}(x)\right)\right\| \leq \max \left\{q \frac{Q}{8}, 1\right\}=1$. Now (4) together with (M3) implies $\left|h_{A}(z)\right| \leq \frac{1}{4}$ for $z \in U_{x}$.

The following lemma finishes the proof of Theorem 1.
Lemma 6. Let X be a real separable Banach space with a separating polynomial. Then there is an open neighbourhood G of X in \tilde{X} and a collection of functions $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ satisfying the properties $(F-1)-(F 4)$ in Proposition 4.

To prove this lemma we will need a few auxiliary statements.

Lemma 7. Let X be a real Banach space with a separating polynomial. Then there is $\Delta>0$ and a function $v \in H(\Omega)$, where $\Omega=\{x+i y \in \tilde{X} ; x, y \in X,\|y\|<\Delta\}$, such that $v\rangle_{X}$ is Lipschitz and maps into $[0,+\infty), v(0)=0, v(x) \geq\|x\|-1$ for $x \in X$, and the family of functions $\{y \mapsto \operatorname{Im} \nu(x+i y) ; y \in X,\|y\|<\Delta\}_{x \in X}$ is equicontinuous at 0 .

Proof. It is an easy well-known fact that if X admits a separating polynomial then X admits a homogeneous separating polynomial (see e.g. [FPWZ]). Put $v(z)=(1+P(z))^{1 / n}-1$ for a suitable n-homogeneous separating polynomial P. The equicontinuity follows from the fact that v is even Lipschitz on the whole of Ω. For the details see [AFK] Lemma 2].

Lemma 8. There are functions $\phi_{n} \in H\left(\mathbb{C}^{n}\right)$ and constants $\delta_{n}>0, n \in \mathbb{N}$, with the following properties:
(H1) $\phi_{n} \uparrow_{\mathbb{R}^{n}}$ maps into $[0,1]$,
(H2) $\phi_{n} \upharpoonright_{\mathbb{R}^{n}}$ is 1 -Lipschitz with respect to the maximum norm,
(H3) $\left|\phi_{n}(z)\right| \leq 2^{-n}$ for every $z \in \mathbb{C}^{n}$ such that there is $j \in\{1, \ldots, n-1\}$ for which $\operatorname{Re} z_{j} \leq \frac{1}{2}$ and $\left|\operatorname{Im} z_{i}\right| \leq \delta_{j}$ for $i=1, \ldots, n$,
(H4) $\phi_{n}(x) \geq \frac{1}{4}$ for every $x \in \mathbb{R}^{n}$ for which $x_{n} \leq 3$ and $x_{i} \geq 3, i=1, \ldots, n-1$,
(H5) $\phi_{n}(x) \leq \frac{1}{32}$ for $x \in \mathbb{R}^{n}, x_{n} \geq 5$.
With the aid of the statements above the proof of Lemma 6 is not difficult.
Proof of Lemma 6 Let v and Ω be the function and the set from Lemma 7 and ϕ_{n} be the functions from Lemma 8 Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a dense subset of X. Put

$$
\psi_{n}(z)=\phi_{n}\left(v\left(z-x_{1}\right), \ldots, v\left(z-x_{n}\right)\right) \quad \text { for } z \in \Omega, n \in \mathbb{N}
$$

Then $\psi_{n} \in H(\Omega)$ and by $(H 1) \psi_{n} \upharpoonright_{X}$ maps into [0, 1].
Let $M>0$ be such that $v \upharpoonright_{X}$ is M-Lipschitz. Pick any $x \in X$. Then from the density of $\left\{x_{n}\right\}$ and the fact that $v(y) \leq M\|y\|$ for any $y \in X$ it follows that there is $k \in \mathbb{N}$ such that $v\left(x-x_{k}\right) \leq 3$. Let $k \in \mathbb{N}$ be the smallest such number. Then property (H4) implies that $\psi_{k}(x) \geq \frac{1}{4}$. Thus $\sup _{n \in \mathbb{N}} \psi_{n}(x) \geq Q$ for each $x \in X$, where $Q=\frac{1}{4}$.

By the continuity of v there is $\rho>0$ such that $|v(z)|<\frac{1}{2}$ whenever $z \in \tilde{X},\|z\|<\rho$. Now fix $x \in X$ and find an index $j \in \mathbb{N}$ such that $\left\|x_{j}-x\right\|<\rho$. Using the equicontinuity of $\{y \mapsto \operatorname{Im} v(w+i y)\}$ at 0 choose $0<\Delta_{j}<\Delta$ such that $|\operatorname{Im} v(w+i y)|<\delta_{j}$ whenever $w, y \in X,\|y\|<\Delta_{j}$. Let us define $U_{x}=\left\{z=w+i y \in \tilde{X} ;\left\|z-x_{j}\right\|<\rho,\|y\|<\Delta_{j}\right\}$. Notice that U_{x} is an open neighbourhood of x and $z-x_{l} \in \Omega$ for every $z \in U_{x}, l \in \mathbb{N}$. Let $z=w+i y \in U_{x}$. Then $\left|\operatorname{Im} v\left(z-x_{l}\right)\right|=\left|\operatorname{Im} v\left(w-x_{l}+i y\right)\right|<\delta_{j}$ for every $l \in \mathbb{N}$. Furthermore, $\left|\operatorname{Re} v\left(z-x_{j}\right)\right| \leq\left|v\left(z-x_{j}\right)\right|<\frac{1}{2}$. Hence, by (H3), $\left|\psi_{n}(z)\right| \leq 2^{-n}$ for $n>j$ and $z \in U_{x}$. It follows that for any $\left(a_{n}\right) \in \ell_{\infty},\left(a_{n} \psi_{n}(z)\right)_{n \in \mathbb{N}}=\sum_{n=1}^{\infty} a_{n} \psi_{n}(z) e_{n} \in \tilde{c_{0}}$ and the sum converges absolutely uniformly on U_{x}. As the mappings $z \mapsto a_{n} \psi_{n}(z) e_{n}$ are holomorphic as mappings from Ω into $\tilde{c_{0}}$, we can conclude that $\left(a_{n} \psi_{n}\right)$ is a holomorphic mapping from $G=\bigcup_{x \in X} U_{x}$ into $\tilde{c_{0}}$, which gives (F 2 z .

Property (F 3) obviously holds by (H2]. Finally we show that (F 4) is satisfied with $r=6$. Indeed, fix $n \in \mathbb{N}$. For $x \in X$, $\left\|x-x_{n}\right\| \geq 6$ we have $v\left(x-x_{n}\right) \geq\left\|x-x_{n}\right\|-1 \geq 5$, hence, by (H5), $\psi_{n}(x) \leq \frac{1}{32}=\frac{Q}{8}$.

For the proof of Proposition 5 we need the following version of the Implicit Function Theorem with explicit estimates on the size of the region where the solution is found.

Theorem 9 (Implicit Function Theorem). Let X be a complex Banach space, $U \subset X$ and $V \subset \mathbb{C}$ open sets, and $F \in H(U \times V)$. Let $\hat{z} \in U, \hat{u} \in V$ satisfy $F(\hat{z}, \hat{u})=0$. Further let $R>0, S>0$, and $M>0$ be such that $B(\hat{z}, S) \subset U, B(\hat{u}, R) \subset V$, and $|F(z, u)| \leq M$ for every $z \in B(\hat{z}, S), u \in B(\hat{u}, R)$. Assume that $\left|\frac{\partial F}{\partial u}(\hat{z}, \hat{u})\right| \geq a>0$ and $0<r<\frac{a R^{2}}{a R+M}$. Put $c=a r-\frac{M r^{2}}{R(R-r)}$ and $s=S \frac{c}{c+M}$. Then for each $z \in U(\hat{z}, s)$ there is a unique $u \in U(\hat{u}, r)$ satisfying $F(z, u)=0$. Denote such u by $\varphi(z)$. Then $\varphi \in H(U(\hat{z}, s))$.

The proof of this theorem is fairly standard using for example the Rouché theorem and Cauchy's estimates for $\frac{\partial^{n} F}{\partial u^{n}}$ on \mathbb{C} and for $\frac{\partial F}{\partial z}$ on X. Some details can be found e.g. in [CHP], although the estimates and the proof given there are not entirely correct.

Proof of Proposition 5. Define μ on c_{0} as the Minkowski functional of the set $\left\{x \in c_{0} ; \sum_{n=1}^{\infty}\left(x_{n}\right)^{2 n} \leq 1\right\}$. Then μ is an equivalent norm on c_{0} for which $\|x\| \leq \mu(x) \leq \sqrt{2}\|x\|$ (see [FPWZ]). This gives property (M4) and (M2).

Let $F: \tilde{c}_{0} \times(\mathbb{C} \backslash\{0\}) \rightarrow \mathbb{C}$ be defined as $F(z, u)=\sum_{n=1}^{\infty}\left(z_{n} / u\right)^{2 n}-1$. This function is holomorphic on $\tilde{c}_{0} \times(\mathbb{C} \backslash\{0\})$ and for every $x \in c_{0} \backslash\{0\}$ we have $F(x, \mu(x))=0$.

Fix $w \in c_{0} \backslash\{0\}$. Put $R=\frac{\|w\|}{2}, S=\frac{\|w\|}{4}, M=1+\sum_{n=1}^{\infty}\left(\frac{1}{2}+\frac{2 q}{\|w\|}\left|w_{n}\right|\right)^{2 n}, a=\frac{1}{\sqrt{2} q\|w\|}, r=\min \left\{\frac{1}{2} \frac{a R^{2}}{a R+M}, 2-\sqrt{2}\right\}$, and $\Delta_{w}=s$ as defined in Theorem 9 Now choose any $y \in c_{0},|w| \leq|y| \leq q|w|$. Then $R<\|w\| \leq\|y\| \leq \mu(y)$, thus $B(\mu(y), R) \subset V=\mathbb{C} \backslash\{0\}$. For any $z \in B(y, S), u \in B(\mu(y), R)$ we have $|u| \geq \mu(y)-R \geq\|y\|-R \geq\|w\|-R=\frac{\|w\|}{2}$ and $\left|z_{n}\right| \leq\left|y_{n}\right|+\left|z_{n}-y_{n}\right| \leq q\left|w_{n}\right|+\|z-y\| \leq q\left|w_{n}\right|+\frac{\|w\|}{4}$, and hence $|F(z, u)| \leq 1+\sum_{n=1}^{\infty}\left|\frac{z_{n}}{u}\right|^{2 n} \leq M$. Finally, $\left|\frac{\partial F}{\partial u}(y, \mu(y))\right|=\left|-\frac{1}{\mu(y)} \sum_{n=1}^{\infty} 2 n\left(\frac{y_{n}}{\mu(y)}\right)^{2 n}\right| \geq \frac{1}{\mu(y)} \sum_{n=1}^{\infty}\left(\frac{y_{n}}{\mu(y)}\right)^{2 n}=\frac{1}{\mu(y)} \geq \frac{1}{\sqrt{2}\|y\|} \geq a$. Thus by Theorem 9 the equation $F(z, u)=0$ uniquely determines a holomorphic function μ_{y}^{w} on $U_{\tilde{c}_{0}}\left(y, \Delta_{w}\right)$ with values in $U(\mu(y), r)$ and this holds for every $y \in c_{0},|w| \leq|y| \leq q|w|$.

Take any two functions $\mu_{1}=\mu_{y_{1}}^{w_{1}}, \mu_{2}=\mu_{y_{2}}^{w_{2}}$ defined on open balls U_{1} and U_{2} respectively. If U_{1} and U_{2} intersect, then it is easy to check that $U_{1} \cap U_{2} \cap c_{0}$ is a non-empty set relatively open in c_{0}. Since $\mu_{1}=\mu$ on $U_{1} \cap c_{0}$ and $\mu_{2}=\mu$ on $U_{2} \cap c_{0}$, it follows that both holomorphic functions μ_{1} and μ_{2} agree on some ball in $U_{1} \cap U_{2}$ and therefore on the whole $U_{1} \cap U_{2}$. This observation allows us to put $W=\bigcup\left\{U_{\tilde{c}_{0}}\left(y, \Delta_{w}\right) ; w \in c_{0} \backslash\{0\}, y \in c_{0},|w| \leq|y| \leq q|w|\right\}$ and define μ on W by $\mu(z)=\mu_{y}^{w}(z)$ whenever $z \in U\left(y, \Delta_{w}\right)$. This gives property (M]1).

To prove (M3) let $w \in c_{0} \backslash\{0\}, y \in c_{0},|w| \leq|y| \leq q|w|,\|y\| \leq 1$, and $z \in U_{\tilde{c}_{0}}\left(y, \Delta_{w}\right)$. Then by the choice of r above we have $\mu(z) \in U(\mu(y), 2-\sqrt{2})$ and therefore $|\mu(z)|<|\mu(y)|+2-\sqrt{2} \leq \sqrt{2}\|y\|+2-\sqrt{2} \leq 2$.

It remains to prove Lemma 3 and Lemma 8 . The proofs are standard using integral convolution technique and estimates which are not difficult. We could just write the formulas for the functions in consideration and stop there (we claim a short proof after all). Nevertheless for the convenience of the reader we include rather detailed computations.

Proof of Lemma 8 Let $\zeta_{n}: \mathbb{R}^{n} \rightarrow[0,1]$ be a 1-Lipschitz function (with respect to the maximum norm) such that

$$
\zeta_{n}(x)= \begin{cases}0 & \text { whenever } x_{n} \geq 4 \text { or } \exists i \in\{1, \ldots, n-1\}: x_{i} \leq 1 \\ 1 & \text { whenever } x_{n} \leq 3 \text { and } \forall i \in\{1, \ldots, n-1\}: x_{i} \geq 2\end{cases}
$$

For each $n \in \mathbb{N}$ put $\delta_{n}=\sqrt{2^{-n} / 8}$ and find $a_{n} \in \mathbb{R}$ such that

$$
\begin{align*}
a_{n} 2^{-n} & \geq 3, \tag{5}\\
e^{-a_{n} 2^{-n} / 8} & \leq 2 \sqrt{\pi} \cdot 2^{-n}, \text { and } \tag{6}\\
\int_{-\sqrt{a_{n} 2^{-n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t & \geq \frac{1}{\sqrt[n]{2}} \sqrt{\pi} . \tag{7}
\end{align*}
$$

Finally, put

$$
\phi_{n}(z)=\frac{1}{c_{n}} \int_{\mathbb{R}^{n}} \zeta_{n}(t) e^{-a_{n} \sum_{i=1}^{n} 2^{-i}\left(z_{i}-t_{i}\right)^{2}} \mathrm{~d} t \quad \text { for } z \in \mathbb{C}^{n}
$$

where $c_{n}=\int_{\mathbb{R}^{n}} e^{-a_{n} \sum_{i=1}^{n} 2^{-i} t_{i}^{2}} \mathrm{~d} t=\sqrt{\left(\frac{\pi}{a_{n}}\right)^{n} \prod_{i=1}^{n} 2^{i}}$.
Using standard theorems on integrals dependent on parameter we obtain $\phi_{n} \in H\left(\mathbb{C}^{n}\right)$. Property (H1) is obvious, and property (H2 2) is easy to check.

Next we will need the elementary estimate

$$
\begin{equation*}
\int_{x}^{+\infty} e^{-t^{2}} \mathrm{~d} t \leq \int_{x}^{+\infty} t e^{-t^{2}} \mathrm{~d} t=\frac{1}{2} e^{-x^{2}} \text { for } x \geq 1 \tag{8}
\end{equation*}
$$

To prove (H3) we use successively the definition of ζ_{n}, Fubini's theorem, substitution, $\operatorname{Re} z_{j} \leq \frac{1}{2}$, estimate (8) together with (5), the definition of δ_{j}, and finally (6) to obtain

$$
\begin{aligned}
&\left|\phi_{n}(z)\right| \leq \frac{1}{c_{n}} \int_{\mathbb{R}^{n}} \zeta_{n}(t) e^{-a_{n}} \sum_{i=1}^{n} 2^{-i} \operatorname{Re}\left(z_{i}-t_{i}\right)^{2} \\
& \mathrm{~d} t=\frac{e^{a_{n}} \sum_{i=1}^{n} 2^{-i}\left(\operatorname{Im} z_{i}\right)^{2}}{c_{n}} \int_{\mathbb{R}^{n}} \zeta_{n}(t) e^{-a_{n}} \sum_{i=1}^{n} 2^{-i}\left(\operatorname{Re} z_{i}-t_{i}\right)^{2} \\
& \mathrm{~d} t \\
& \leq \frac{e^{a_{n} \delta_{j}^{2}}}{c_{n}} \int_{\substack{t \in \mathbb{R}^{n} \\
t_{j}>1}} e^{-a_{n} \sum_{i=1}^{n} 2^{-i}\left(\operatorname{Re} z_{i}-t_{i}\right)^{2}} \mathrm{~d} t=\frac{e^{a_{n} \delta_{j}^{2}}}{c_{n}} \int_{\mathbb{R}^{n-1}} e^{-a_{n} \sum_{i \neq j} 2^{-i}\left(\operatorname{Re} z_{i}-t_{i}\right)^{2}} \mathrm{~d} t \cdot \int_{1}^{+\infty} e^{-a_{n} 2^{-j}\left(\operatorname{Re} z_{j}-t_{j}\right)^{2}} \mathrm{~d} t_{j} \\
&=\frac{e^{a_{n} \delta_{j}^{2}}}{\sqrt{\pi}} \sqrt{a_{n} 2^{-j}} \int_{1}^{+\infty} e^{-a_{n} 2^{-j}\left(\operatorname{Re} z_{j}-t\right)^{2}} \mathrm{~d} t=\frac{e^{a_{n} \delta_{j}^{2}}}{\sqrt{\pi}} \int_{\sqrt{a_{n} 2^{-j}\left(1-\operatorname{Re} z_{j}\right)}}^{+\infty} e^{-t^{2}} \mathrm{~d} t \leq \frac{e^{a_{n} \delta_{j}^{2}}}{\sqrt{\pi}} \int_{\frac{1}{2} \sqrt{a_{n} 2^{-j}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t \\
& \leq \frac{e^{a_{n} \delta_{j}^{2}}}{2 \sqrt{\pi}} \cdot e^{-\frac{1}{4} a_{n} 2^{-j}}=\frac{1}{2 \sqrt{\pi}} \cdot e^{-a_{n}\left(2^{-j} / 4-\delta_{j}^{2}\right)}<\frac{1}{2 \sqrt{\pi}} \cdot e^{-a_{n} 2^{-n} / 8} \leq 2^{-n} .
\end{aligned}
$$

To prove (H4]) we use successively the definition of ζ_{n}, Fubini's theorem and substitution, $x_{n} \leq 3$ and $x_{i} \geq 3$, substitution, and (7) to obtain

$$
\begin{aligned}
\phi_{n}(x) & \geq \frac{1}{c_{n}} \int_{t_{i} \geq 2, i=1, \ldots, n-1} e^{-a_{n} \leq \sum_{i=1}^{n} 2^{-i}\left(x_{i}-t_{i}\right)^{2}} \mathrm{~d} t=\frac{1}{c_{n}} \int_{-\infty}^{3-x_{n}} e^{-a_{n} 2^{-n} t^{2}} \mathrm{~d} t \cdot \prod_{i=1}^{n-1} \int_{2-x_{i}}^{+\infty} e^{-a_{n} 2^{-i} t^{2}} \mathrm{~d} t \\
& \geq \frac{1}{c_{n}} \int_{-\infty}^{0} e^{-a_{n} 2^{-n} t^{2}} \mathrm{~d} t \cdot \prod_{i=1}^{n-1} \int_{-1}^{+\infty} e^{-a_{n} 2^{-i} t^{2}} \mathrm{~d} t \geq \frac{1}{2} \frac{1}{c_{n}} \prod_{i=1}^{n} \int_{-1}^{+\infty} e^{-a_{n} 2^{-i} t^{2}} \mathrm{~d} t=\frac{1}{2} \frac{1}{(\sqrt{\pi})^{n}} \prod_{i=1}^{n} \int_{-\sqrt{a_{n} 2^{-i}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t \\
& \geq \frac{1}{2} \frac{1}{(\sqrt{\pi})^{n}} \prod_{i=1}^{n} \int_{-\sqrt{a_{n} 2^{-n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t=\frac{1}{2}\left(\frac{1}{\sqrt{\pi}} \int_{-\sqrt{a_{n} 2^{-n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t\right)^{n} \geq \frac{1}{4} .
\end{aligned}
$$

Finally, to prove (H5) we use successively the definition of ζ_{n}, Fubini's theorem, substitution, $x_{n} \geq 5$, and (8) together with (5) to obtain

$$
\begin{aligned}
& \phi_{n}(x) \leq \frac{1}{c_{n}} \int_{t \in \mathbb{R}^{n}} e^{-a_{n}} \sum_{i=1}^{n} 2^{-i}\left(x_{i}-t_{i}\right)^{2} \\
& \mathrm{~d} t=\sqrt{\frac{a_{n}}{\pi 2^{n}}} \int_{-\infty}^{4} e^{-a_{n} 2^{-n}\left(x_{n}-t\right)^{2}} \mathrm{~d} t=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\sqrt{a_{n} 2^{-n}}\left(4-x_{n}\right)} e^{-t^{2}} \mathrm{~d} t \\
& \leq \frac{1}{\sqrt{\pi}} \int_{\sqrt{a_{n} 2^{-n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t \leq \frac{1}{2 \sqrt{\pi}} \cdot e^{-a_{n} 2^{-n}}<\frac{1}{32}
\end{aligned}
$$

Proof of Lemma 3 Let $\zeta: \mathbb{R} \rightarrow[0,1]$ be defined as $\zeta(t)=0$ for $t \leq \frac{5}{8}, \zeta(t)=4 t-\frac{5}{2}$ for $t \in\left(\frac{5}{8}, \frac{7}{8}\right)$, and $\zeta(t)=1$ for $t \geq \frac{7}{8}$. Obviously ζ is a 4 -Lipschitz function. For each $n \in \mathbb{N}$ find $a_{n} \in \mathbb{R}$ such that

$$
\begin{align*}
\frac{3}{8} \sqrt{a_{n}} & \geq 1, \tag{9}\\
e^{-\frac{5}{64} a_{n}} & \leq 2 \sqrt{\pi} \cdot 2^{-n}, \tag{10}\\
\int_{-\frac{1}{8} \sqrt{a_{n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t & \geq\left(1-2^{-n}\right) \sqrt{\pi}, \text { and } \tag{11}\\
2 \sqrt{a_{n}} \cdot e^{-\frac{1}{64} a_{n}} & \leq \sqrt{\pi} \cdot 2^{-n} . \tag{12}
\end{align*}
$$

Finally, put

$$
\theta_{n}(z)=\frac{1}{c_{n}} \int_{\mathbb{R}} \zeta(t) e^{-a_{n}(z-t)^{2}} \mathrm{~d} t \quad \text { for } z \in \mathbb{C}
$$

where $c_{n}=\int_{\mathbb{R}} e^{-a_{n} t^{2}} \mathrm{~d} t=\sqrt{\frac{\pi}{a_{n}}}$.
Using standard theorems on integrals dependent on parameter we obtain $\theta_{n} \in H(\mathbb{C})$. Property (T 11 is obvious, and property (T/2) is easy to check.

To prove (T3) we use successively the definition of $\zeta,|\operatorname{Im} z| \leq \frac{1}{4}$, substitution, $\operatorname{Re} z \leq \frac{1}{4}$, estimate (8) together with (9), and finally (10) to obtain

$$
\begin{aligned}
\left|\theta_{n}(z)\right| & \leq \frac{1}{c_{n}} \int_{\mathbb{R}} \zeta(t) e^{-a_{n} \operatorname{Re}(z-t)^{2}} \mathrm{~d} t=\frac{e^{a_{n}(\operatorname{Im} z)^{2}}}{c_{n}} \int_{\mathbb{R}} \zeta(t) e^{-a_{n}(\operatorname{Re} z-t)^{2}} \mathrm{~d} t \leq \frac{e^{\frac{1}{16} a_{n}}}{c_{n}} \int_{\frac{5}{8}}^{+\infty} e^{-a_{n}(\operatorname{Re} z-t)^{2}} \mathrm{~d} t \\
& =\frac{e^{\frac{1}{16} a_{n}}}{\sqrt{\pi}} \int_{\sqrt{a_{n}}\left(\frac{5}{8}-\operatorname{Re} z\right)}^{+\infty} e^{-t^{2}} \mathrm{~d} t \leq \frac{e^{\frac{1}{16} a_{n}}}{\sqrt{\pi}} \int_{\frac{3}{8} \sqrt{a_{n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t \leq \frac{e^{\frac{1}{16} a_{n}}}{2 \sqrt{\pi}} \cdot e^{-\frac{9}{64} a_{n}}=\frac{e^{-\frac{5}{64} a_{n}}}{2 \sqrt{\pi}} \leq 2^{-n} .
\end{aligned}
$$

To prove (T4) we use successively the definition of ζ, substitution, $x \geq 1$, and (11) to obtain

$$
\theta_{n}(x) \geq \frac{1}{c_{n}} \int_{\frac{7}{8}}^{+\infty} e^{-a_{n}(x-t)^{2}} \mathrm{~d} t=\frac{1}{\sqrt{\pi}} \int_{\sqrt{a_{n}}\left(\frac{7}{8}-x\right)}^{+\infty} e^{-t^{2}} \mathrm{~d} t \geq \frac{1}{\sqrt{\pi}} \int_{-\frac{1}{8} \sqrt{a_{n}}}^{+\infty} e^{-t^{2}} \mathrm{~d} t \geq 1-2^{-n}
$$

Finally, we show (T5). Differentiating under the integral sign we obtain

$$
\theta_{n}^{\prime}(x)=\frac{2 a_{n}}{c_{n}} \int_{\mathbb{R}} \zeta(t)(t-x) e^{-a_{n}(t-x)^{2}} \mathrm{~d} t
$$

Thus for $x \leq \frac{1}{2}$ using the definition of ζ, substitution, and (12) we get

$$
\left|\theta_{n}^{\prime}(x)\right| \leq \frac{2 a_{n}}{c_{n}} \int_{\frac{5}{8}}^{+\infty}(t-x) e^{-a_{n}(t-x)^{2}} \mathrm{~d} t=\frac{1}{c_{n}} \int_{-\infty}^{-a_{n}\left(\frac{5}{8}-x\right)^{2}} e^{y} \mathrm{~d} y=\sqrt{\frac{a_{n}}{\pi}} \cdot e^{-a_{n}\left(\frac{5}{8}-x\right)^{2}} \leq \sqrt{\frac{a_{n}}{\pi}} \cdot e^{-\frac{1}{64} a_{n}} \leq 2^{-n}
$$

On the other hand, for $x \geq 1$ using the definition of ζ, evaluation of the integrals, and (12) we get

$$
\begin{aligned}
\left|\theta_{n}^{\prime}(x)\right| & =\frac{2 a_{n}}{c_{n}}\left|\int_{\frac{5}{8}}^{\frac{7}{8}} \zeta(t)(t-x) e^{-a_{n}(t-x)^{2}} \mathrm{~d} t+\int_{\frac{7}{8}}^{+\infty}(t-x) e^{-a_{n}(t-x)^{2}} \mathrm{~d} t\right| \\
& \leq \frac{2 a_{n}}{c_{n}} \int_{\frac{5}{8}}^{\frac{7}{8}}|t-x| e^{-a_{n}(t-x)^{2}} \mathrm{~d} t+\frac{2 a_{n}}{c_{n}}\left|\int_{\frac{7}{8}}^{+\infty}(t-x) e^{-a_{n}(t-x)^{2}} \mathrm{~d} t\right| \\
& =\frac{-2 a_{n}}{c_{n}} \int_{\frac{5}{8}}^{\frac{7}{8}}(t-x) e^{-a_{n}(t-x)^{2}} \mathrm{~d} t+\frac{1}{c_{n}} \cdot e^{-a_{n}\left(\frac{7}{8}-x\right)^{2}} \\
& =\frac{1}{c_{n}}\left(e^{-a_{n}\left(\frac{7}{8}-x\right)^{2}}-e^{-a_{n}\left(\frac{5}{8}-x\right)^{2}}+e^{-a_{n}\left(\frac{7}{8}-x\right)^{2}}\right) \leq \frac{2}{c_{n}} \cdot e^{-a_{n}\left(\frac{7}{8}-x\right)^{2}} \leq 2 \sqrt{\frac{a_{n}}{\pi}} \cdot e^{-\frac{1}{64} a_{n}} \leq 2^{-n} .
\end{aligned}
$$

References

[AFK] D. Azagra, R. Fry and L. Keener, Real analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces, J. Funct. Anal. 262 (2012), no. 1, 124-166.
[CHP] H.C. Chang, W. He and N. Prabhu, The analytic domain in the Implicit function theorem, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 12, 5 pp .
[F] R. Fry, Approximation by functions with bounded derivative on Banach spaces, Bull. Austral. Math. Soc. 69 (2004), 125-131.
[FPWZ] M. Fabian, D. Preiss, J.H.M. Whitfield and V. Zizler, Separating polynomials on Banach spaces, Q. J. Math. 40 (1989), no. 4, 409-422.
[HJ] P. Hájek and M. Johanis, Smooth approximations, J. Funct. Anal. 259 (2010), no. 3, 561-582.
[K] J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 214-231.
Department of Mathematical Analysis, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic
E-mail address: johanis@karlin.mff.cuni.cz

