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ABSTRACT. Classical Marchaud’s theorem (1927) asserts that if f is a bounded function on Œa; b�, k 2 N, and the .kC 1/th modulus
of smoothness !kC1.f I t/ is so small that �.t/ D

R t
0

!kC1.f Is/

skC1
ds < C1 for t > 0, then f 2 Ck

�
.a; b/

�
and f .k/ is uniformly

continuous with modulus c� for some c > 0 (i.e. in our terminology f is Ck;c�-smooth). Using a known version of the converse of
Taylor theorem we easily deduce Marchaud’s theorem for functions on certain open connected subsets of Banach spaces from the classical
one-dimensional version. In the case of a bounded subset of Rn our result is more general than that of H. Johnen and K. Scherer (1973),
which was proved by quite a different method. We also prove that if a locally bounded mapping between Banach spaces is Ck;! -smooth on
every line, then it is Ck;c! -smooth for some c > 0.

1. INTRODUCTION

Classical Marchaud’s theorem (1927) asserts that if f is a bounded function on Œa; b�, k 2 N, and the .k C 1/th modulus of
smoothness !kC1.f I t / is so small that �.t/ D

R t
0

!kC1.f Is/

skC1
ds < C1 for t > 0, then f 2 C k

�
.a; b/

�
and f .k/ is uniformly

continuous with modulus c� for some c > 0. Marchaud’s theorem was generalised to functions defined on bounded LG domains
in Rn in [JS] (it is an easy consequence of Theorems 1 and 2 of [JS]).

We will generalise Marchaud’s theorem to mappings on certain open connected subsets of Banach spaces. Namely our proof
works if the domain has the “uniform convex chain (UCC) property” (in particular, if it is convex and bounded or if it is convex
and contains an unbounded cone). We show that our version of Marchaud’s theorem (in Rn) is more general than that of [JS]
(which works with LG domains), see Proposition 21.

We deduce our version of Marchaud’s theorem rather easily from the classical one-dimensional version and a recent ([J])
quantitative version of the Converse Taylor theorem. Both our proof and the proof of the result of [J] use only a little of analysis;
they are essentially based on several non-trivial but well-known properties of polynomials in Banach spaces.

The rough strategy of our proof is the following: If f satisfies the assumptions of Marchaud’s theorem in U � X , then its
one-dimensional version implies that f is C k;c1�-smooth on all segments in U . For convex U we then show that this fact implies
(see Proposition 12) that f is C k;c2�-smooth on U . This is done by verifying (using Theorem 9) that near each a 2 U the
mapping f is well approximated by a polynomial of degree at most k and so the quantitative version of the Converse Taylor
theorem of [J] implies that f is C k;c2�-smooth on U .

The above method gives indeed very easily Marchaud’s theorem in higher dimensions under the assumption of continuity
of f on convex domains, see Proposition 13. We believe that this simple proof may be interesting also for people working in the
function spaces theory in Rn. Moreover, it generalises to the domains with the UCC property quite easily, see Remark 14.

In the main section (Section 4) we prove a more general version (for vector-valued mappings on UCC domains) of Marchaud’s
theorem (Theorem 20) under much weaker assumptions (e.g. for locally bounded mappings). This generalisation needs some
additional technical results, nevertheless we believe it is interesting from the point of view of differentiation theory in Banach
spaces.

Theorem 9 also immediately implies Theorem 10 which is a new “directional version” of the Converse Taylor theorem and can
be of some independent interest. Another new interesting result is a characterisation of C k;c!-smoothness via the smoothness
on one-dimensional affine subspaces in the domain (Theorem 19), which is analogous to the characterisation of polynomials or
holomorphic mappings.

2. PRELIMINARIES

We set N0 D N [ f0g. For x 2 R we denote by dxe the ceiling of x, i.e. the unique number k 2 Z satisfying k � 1 < x � k.
All vector spaces considered are real. We denote by B.x; r/, resp. U.x; r/ the closed, resp. open ball in a normed linear space
centred at x with radius r > 0. By BX we denote the closed unit ball of a normed linear space X , i.e. BX D B.0; 1/. By SX
we denote the unit sphere of a normed linear space X . Let X , Y be normed linear spaces and n 2 N. By L.nX IY / we denote
the space of continuous n-linear mappings from Xn to Y with the norm kMk D supx1;:::;xn2BX kM.x1; : : : ; xn/k. Recall that a
continuous n-homogeneous polynomial from X to Y is a mapping P that is given by P.x/ D M.x; : : : ; x/, x 2 X , for some
M 2 L.nX IY /. By P .nX IY / we denote the space of continuous n-homogeneous polynomials from X to Y with the norm
kP k D supx2BX kP.x/k. By P n.X IY / we denote the space of continuous polynomials of degree at most n from X to Y with the
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norm kP k D supx2BX kP.x/k. Of course, P 0.X IY / D P .0X IY / is the space of constant mappings. The Polarisation formula
(see e.g. [MO1, Statement 8, p. 62] or [HJ, Proposition 1.13]) implies the following fact:

Fact 1. Let X , Y be normed linear spaces and let n 2 N. There is a mapping I W P .nX IY / ! L.nX IY / that satisfies
P.h/ D I.P /.h; : : : ; h/ which is a linear isomorphism into and kP k � kI.P /k � nn

nŠ
kP k.

The mapping f W X ! Y between topological spaces X and Y is said to be Baire measurable (or to have the Baire property) if
f �1.G/ � X has the Baire property for every G � Y open, so each Borel measurable mapping is also Baire measurable.

Let X , Y be vector spaces, U � X , and f W U ! Y . We define the first difference by

�1f .xI h/ D f .x C h/ � f .x/

for all x 2 U and h 2 X such that the right-hand side is defined. Further, we inductively define the differences of higher order by

�nf .xI h1; : : : ; hn/ D �
n�1f .x C h1I h2; : : : ; hn/ ��

n�1f .xI h2; : : : ; hn/

for all x 2 U and h1; : : : ; hn 2 X such that the right-hand side is defined. We are also going to use the classical notation
�n
h
f .x/ D �nf .xI h; : : : ; h/. It is easy to check that

�nhf .x/ D

nX
kD0

.�1/n�k
�
n

k

�
f .x C kh/: (1)

We will rely on the following fundamental result; it is a combination of [MO1, Satz I] and [MO2, Statement 12, p. 182], see
also [HJ, Corollary 1.55]:

Theorem 2 ([MO1], [MO2]). Let X be a Banach space, Y a normed linear space, n 2 N0, and let P W X ! Y be such that
� B P is Baire measurable for each � 2 Y �. Then P 2 P n.X IY / if and only if P satisfies the (Fréchet) formula

�nC1
h
P.x/ D

nC1X
kD0

.�1/nC1�k
�
nC 1

k

�
P.x C kh/ D 0 (2)

for all x; h 2 X .

We remark that the above characterisation holds also in incomplete spaces X provided that we assume that � B P is continuous
([MO1, Satz I*], see also [HJ, Theorem 2.49, Fact 1.49]).

The following characterisation is an immediate consequence: A Baire measurable mapping P W X ! Y is a continuous
polynomial of degree at most n if and only if the restriction of P to each one-dimensional affine subspace of X is a polynomial of
degree at most n; moreover, it suffices to test only the polynomiality of � B P , � 2 Y �. We note that a similar characterisation
holds also for holomorphic mappings (of course in the case of complex Banach spaces). One of our main results below is that
C k;c!-smoothness can be characterised in the same way (Theorem 19, Theorem 17).

LetX , Y be normed linear spaces,U � X open, f W U ! Y , and x 2 U . ByDf.x/ we denote the Fréchet derivative of f at x,
and by Df.x/Œh� we denote the evaluation of this derivative in h 2 X . Similarly we denote by Dkf .x/ the kth Fréchet derivative
of f at x. By dkf .x/ we denote the k-homogeneous polynomial corresponding to the symmetric k-linear mapping Dkf .x/, so
dkf .x/Œh� D Dkf .x/Œh; : : : ; h�. For convenience we put d0f D f . Recall that we identify Dkf .x/ and D.Dk�1f /.x/ using
the formula Dkf .x/Œh1; : : : ; hk � D

�
D.Dk�1f /.x/Œh1�

�
.h2; : : : ; hk/.

We recall the following well-known easy facts:

Fact 3. Let X be a normed linear space, U � X open, f W U ! R, x 2 U , h 2 X , and k 2 N. Further, let g.t/ D f .x C th/.
Then dkf .x C th/Œh� D g.k/.t/ if the left-hand side exists.

Fact 4. Let X , Y , Z be normed linear spaces, L 2 L.Y IZ/, U � X open, and k 2 N. Let f W U ! Y be k-times Fréchet
differentiable at a 2 U . Then Dk.L B f /.a/ D L BDkf .a/ and consequently also dk.L B f /.a/ D L B dkf .a/.

We say that f is C k-smooth if Dkf (i.e. the mapping x 7! Dkf .x/) is continuous in the domain. Note that f is C k-smooth if
and only if dkf is continuous in the domain by Fact 1. We denote by C k.U IY / the vector space of all C k-smooth mappings
from U into Y . Further, C 0.U IY / D C.U IY / is the space of continuous mappings. We set C k.U / D C k.U IR/, k 2 N0.

We also recall the following well-known corollary of the Taylor formula (it follows easily from [D, Theorem 8.14.2], or see
[HJ, Corollary 1.108]).

Theorem 5 (see e.g. [D]). Let X , Y be normed linear spaces, U � X an open convex set, k 2 N, and f 2 C k.U IY /. Then for
any x 2 U and h 2 X satisfying x C h 2 U we havef .x C h/ �

kX
jD0

1

j Š
d jf .x/Œh�

 � 1

kŠ

�
sup
t2Œ0;1�

dkf .x C th/ � dkf .x/� � khkk :
Let .P; �/, .Q; �/ be metric spaces. The minimal modulus of continuity of a uniformly continuous mapping f W P ! Q is

defined as !f .ı/ D sup f�.f .x/; f .y//I x; y 2 P; �.x; y/ � ıg for ı 2 Œ0;C1/. Clearly, !f is continuous at 0.



SMOOTHNESS VIA DIRECTIONAL SMOOTHNESS AND MARCHAUD’S THEOREM IN BANACH SPACES 3

A modulus is a non-decreasing function ! W Œ0;C1/! Œ0;C1� continuous at 0 with !.0/ D 0. The set of all moduli will be
denoted by M. (Notice that a modulus by our definition can be infinite on some interval.) We say that f W P ! Q is uniformly
continuous with modulus of continuity ! 2M if !f � !.

Let X , Y be normed linear spaces, U � X an open set, k 2 N, f 2 C k.U IY /, and let ! 2M. We say that f is C k;!-smooth
on U (or f 2 C k;!.U IY /) if dkf is uniformly continuous on U with modulus !. Note that Fact 1 implies that if f is
C k;!-smooth, then Dkf is uniformly continuous on U with modulus kk

kŠ
!, and conversely if f is C k-smooth and Dkf is

uniformly continuous on U with modulus !, then f is C k;!-smooth.
Further, we define the kth modulus of smoothness of f W U ! Y , U � X any set, by

!k.f I t / D sup
khk�t

Œx;xCkh��U

k�khf .x/k; t 2 Œ0;C1/;

where Œx; x C kh� denotes the segment with endpoints x and x C kh. We remark that unlike in the definition of modulus of
continuity, in the definition of modulus of smoothness we are not allowed to “jump over the gaps in the domain”.

We will use the following version of Marchaud’s theorem:

Theorem 6 ([M], [DL]). Let k 2 N. There is a constant Ak > 0 such that if a; b 2 R, a < b, and f W Œa; b�! R is a bounded
function, then f is k-times differentiable on .a; b/ and for each t � 0

!f .k/.t/ D !1.f
.k/
I t / � Ak

Z t

0

!kC1.f I s/

skC1
ds;

provided that the integral on the right-hand side is finite for some t > 0.

For a continuous f it is proved e.g. in [DL, Theorem 6.3.1] (where we put A D Œa; b�, p D1, and r D k C 1); further, the
original Marchaud’s version [M, § 29, cf. § 22] shows that the finiteness of the integral already gives the continuity of f .

3. CONVERSE TAYLOR THEOREMS AND SIMPLE CONSEQUENCES

Let X , Y be normed linear spaces, U � X open, f W U ! Y , and k 2 N0. We say that f is T k-smooth at x 2 U if there
exists a polynomial P x 2 P k.X IY / satisfying P x.0/ D f .x/ and

f .x C h/ � P x.h/ D o.khkk/; h! 0:

We say that f is T k-smooth on U if it is T k-smooth at every point x 2 U . Recall that by Peano’s form of Taylor’s theorem a
C k-smooth mapping is also T k-smooth and the approximating polynomial is given by

Pk
jD0

1
j Š
d jf .x/. A converse statement is

contained in the following theorem, see e.g. [LS], [AD], cf. also [J] or [HJ, Theorem 1.110].

Theorem 7 (Converse Taylor theorem; [LS], [AD]). Let X , Y be normed linear spaces, U � X an open set, f W U ! Y , and
k 2 N0. Then f 2 C k.U IY / if and only if f is a T k-smooth mapping satisfying

lim
.y;h/!.x;0/

h¤0

kR.y; h/k

khkk
D 0

for every x 2 U , where R.x; h/ D f .x C h/ � P x.h/ and the polynomials P x 2 P k.X IY / come from the definition of
T k-smoothness of f at x.

We will rely on a quantitative version of the above theorem. LetX , Y be normed linear spaces, U � X an open set, f W U ! Y ,
and k 2 N0. We say that f is UT k-smooth on U with modulus ! if for each x 2 U there is a polynomial P x 2 P k.X IY /

satisfying
kf .x C h/ � P x.h/k � !.khk/khkk for x C h 2 U .

For a convex bounded subset U of a normed linear space we define its “ellipticity” eU D diamU
sup frI 9a2U W B.a;r/�U g .

Theorem 8 ([J], see also [HJ, Theorem 1.125]). Let X , Y be normed linear spaces, U � X an open convex bounded set,
f W U ! Y , and k 2 N. Suppose that f is UT k-smooth on U with modulus !. Then f is C k;m!-smooth on U with m D ckekU ,
where ck > 0 is a constant depending only on k.

We note that the quantity eU is defined slightly differently in [J], but it is clear that it is not larger than eU as defined here.
Now we are ready to present our main tool. Let X , Y be normed linear spaces, A � X , f W A ! Y , and k 2 N0. We

say that f is weakly T k-smooth at x 2 A if there exists a polynomial P x 2 P k.X IY / satisfying P x.0/ D f .x/ and
f .x C th/ � P x.th/ D o.tk/; t ! 0 for each h 2 X . We say that f is weakly T k-smooth on A if it is weakly T k-smooth at
every x 2 A.

We say that f is directionally T k-smooth at x 2 A if the mapping t 7! f .x C th/ is T k-smooth at 0 for each h 2 X , i.e. for
each h 2 X there is a polynomial P x;h 2 P k.RIY / satisfying P x;h.0/ D f .x/ and f .x C th/ � P x;h.t/ D o.tk/; t ! 0. We
say that f is directionally T k-smooth on A if it is directionally T k-smooth at every x 2 A.

Recall that all the polynomials in the above definitions are uniquely determined. Consequently, if f is directionally T k-smooth
at x, then P x;h.t/ D P x;th.1/ for every h 2 X and t 2 R. Further, if f is weakly T k-smooth at x, then f is directionally
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T k-smooth at x and for the approximating polynomials from the definitions the following holds: P x;h.t/ D P x.th/ for h 2 X ,
t 2 R. The converse implication holds under additional assumptions:

Theorem 9. Let X be a Banach space, Y a normed linear space, U � X open, f W U ! Y , a 2 U , and k 2 N. Suppose that
� B f is Baire measurable for each � 2 Y �, f is directionally T k-smooth on U , and further

R.aC ty; th/ D o.tk/; t ! 0 for each y; h 2 X , (3)

where R.x; h/ D f .x C h/ � P x;h.1/ and where the polynomials P x;h 2 P k.RIY / come from the definition of the directional
T k-smoothness of f at x. Then f is weakly T k-smooth at a.

Proof. Without loss of generality we may assume that a D 0. Set P.h/ D P 0;h.1/ for each h 2 X . It is easy to see that it suffices
to show that P 2 P k.X IY /, which will be done using Theorem 2. First we show that � B P is Baire measurable for each � 2 Y �.
So fix � 2 Y �. For each h 2 X there are g0.h/; : : : ; gk.h/ 2 R such that � B P 0;h.t/ D

Pk
jD0 gj .h/t

j for t 2 R. Note that
� B P.h/ D � B P 0;h.1/ D

Pk
jD0 gj .h/ and so it suffices to show that the functions g0; : : : ; gk W X ! R are Baire measurable.

Clearly g0.h/ D � B f .0/ for each h 2 X . We proceed by induction, assuming that g0; : : : ; gm�1 are Baire measurable for some
1 � m � k. Since for a fixed h 2 X we have

lim
t!0

1

tm

 
� B f .th/ �

kX
jD0

gj .h/t
j

!
D �

�
lim
t!0

f .th/ � P 0;h.t/

tm

�
D 0;

it follows that gm.h/ D limt!0
1
tm

�
� B f .th/ �

Pm�1
jD0 gj .h/t

j
�
. In particular,

gm.h/ D lim
n!1

nm

 
� B f

�
h

n

�
�

m�1X
jD0

gj .h/

nj

!
:

Hence on each bounded set gm is a pointwise limit of a sequence of Baire measurable functions and so it is Baire measurable.
Now we show that P satisfies the formula (2). Fix x; h 2 X and define

q.t/ D

kC1X
jD0

.�1/kC1�j
�
k C 1

j

�
P.tx C jth/:

Clearly q 2 P k.RIY /. Let r > 0 be such that t .x C jh/ 2 U for all j 2 f0; : : : ; k C 1g and jt j � r . We have

kq.t/k D


kC1X
jD0

.�1/kC1�j
�
k C 1

j

��
P.tx C jth/ � f .tx C jth/C f .tx C jth/ � P tx;th.j /C P tx;th.j /

�
�

kC1X
jD0

�
k C 1

j

��
kR.0; tx C jth/k C kR.tx; jth/k

�
for all jt j � r , since

PkC1
jD0 .�1/

kC1�j
�
kC1
j

�
P tx;th.j / D 0 by Theorem 2. This estimate combined with the assumption (3)

implies that q.t/ D o.tk/; t ! 0. It follows that q is a zero polynomial (apply the classical fact to � Bq, � 2 Y �), and in particular
q.1/ D 0, which is what we wanted to prove.

ut

As a consequence of the above theorem we obtain that the Converse Taylor theorem holds even if we assume only directional
T k-smoothness:

Theorem 10. Let X be a Banach space, Y a normed linear space, U � X an open set, f W U ! Y , and k 2 N. Then
f 2 C k.U IY / if and only if f is a directionally T k-smooth mapping such that � B f is Baire measurable for each � 2 Y � and

lim
.y;h/!.x;0/

h¤0

kR.y; h/k

khkk
D 0 (4)

for every x 2 U , where R.x; h/ D f .x C h/ � P x;h.1/ and the polynomials P x;h 2 P k.X IY / come from the definition of the
directional T k-smoothness of f at x.

Proof. It suffices to notice that the assumption (4) implies (3) in Theorem 9 and it also promotes the weak T k-smoothness to
T k-smoothness. Hence both implications follow from Theorem 7.

ut

We end this section by showing that Theorem 9 and Theorem 8 (and the one-dimensional Marchaud’s theorem) very easily
imply Marchaud’s theorem in higher (even infinite) dimensions under the assumption of continuity of f . In the next section we
give more general versions of the propositions below, which need some additional technical results.

We believe that the following simple proof of Proposition 13 may be interesting also for people working only with functions
on Rn. We underline that Proposition 13 can be very easily generalised (see Remark 14) to more general subsets of Rn than
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the bounded convex sets (namely the sets with the UCC property); in this way we obtain a result that is more general (see
Proposition 21) than the currently known multi-dimensional versions of Marchaud’s theorem ([JS], which works with LG
domains).

Definition 11. Let X , Y be normed linear spaces and U � X an open set. We say that f W U ! Y is C k;!-smooth on every open
segment in U if for every x 2 U , h 2 SX , and .a; b/ � R satisfying x C th 2 U for all t 2 .a; b/ the mapping g W .a; b/! Y ,
g.t/ D f .x C th/, is C k;!-smooth.

Proposition 12. Let X be a Banach space, Y a normed linear space, U � X an open convex bounded set, f 2 C.U IY /, k 2 N,
and ! 2M. Suppose that f is C k;!-smooth on every open segment in U . Then f is C k;m!-smooth on U with m D ckekU , where
ck > 0 is a constant depending only on k.

Proof. Clearly f is directionally T k-smooth on U . Let x; x C h 2 U , h ¤ 0. Then g.t/ D f
�
x C t h

khk

�
is C k;!-smooth

on .�ı; khk C ı/ for some ı > 0. Thus Taylor’s theorem (Theorem 5) used on g at 0 with the increment khk implies that
kR.x; h/k D kf .xC h/�P x;h.1/k D

g.khk/�P x;h=khk.khk/ � 1
kŠ
!.khk/khkk , where the polynomials P x;h 2 P k.RIY /

come from the definition of the directional T k-smoothness. So (3) is clearly satisfied at each a 2 U and thus f is weakly
T k-smooth on U by Theorem 9. Consequently, f is UT k-smooth on U with modulus 1

kŠ
!, so the application of Theorem 8

finishes the proof.
ut

Proposition 13. Let X be a Banach space, U � X an open convex bounded set, f 2 C.U /, and k 2 N. Then f 2 C k.U / and

!dkf .t/ � Bke
k
U

Z t

0

!kC1.f I s/

skC1
ds;

provided that the integral on the right-hand side is finite for some t > 0. The constant Bk depends only on k.

Proof. For a fixed x 2 U and h 2 SX we define g.t/ D f .x C th/ for t 2 .c; d/, where .c; d/ is the maximal interval
such that x C th 2 U for all t 2 .c; d/. Then it is easy to see (using (1)) that !kC1.gI s/ � !kC1.f I s/ for all s 2 Œ0;C1/.
Therefore !g.k/.t/ � Ak

R t
0

!kC1.f Is/

skC1
ds by Theorem 6 used on each Œa; b� � .c; d/. Hence Proposition 12 implies that

!dkf .t/ � Akcke
k
U

R t
0

!kC1.f Is/

skC1
ds.

ut

Remark 14. If U has the UCC property (see Definition 18), then estimating as in (7) we obtain the assertion of the above
proposition with

!dkf .t/ � Ck;U

Z t

0

!kC1.f I s/

skC1
ds;

where the constant Ck;U depends only on k and U .

4. MAIN RESULTS

Remark 15. First we remark that Theorem 9 holds also for incomplete spaces X provided that we additionally assume that � B f
is continuous for each � 2 Y � and

lim
.y;t/!.h;0/

t¤0

kR.a; ty/k

tk
D 0 for each h 2 X . (5)

Indeed, it suffices to modify the proof of Theorem 9 by showing that in this case � B P is continuous for each � 2 Y � and then
use the remark after Theorem 2. It is clear by passing to � B f and � B P that it suffices to prove that P is continuous if f is
continuous in case that Y D R. So, suppose to the contrary that there are " > 0 and fhng � X such that hn ! h 2 X and
jP.hn/�P.h/j � ". Put qn.t/ D P.thn/�P.th/, n 2 N. Then qn.t/ D P 0;hn.t/�P 0;h.t/ and so qn 2 P k.RIR/; recall that
a D 0. Let K D

S
jt j�r t

�
fhg [ fhnI n 2 Ng

�
for some r > 0 such that K � U . Then K is compact and hence f is uniformly

continuous on K. Let ! be a modulus of continuity of f on K. We have

jqn.t/j � jP.thn/ � f .thn/j C jf .thn/ � f .th/j C jf .th/ � P.th/j � jR.0; thn/j C !.kthn � thk/C jR.0; th/j

for jt j � r . Recall the following elementary fact about polynomials: For a given k 2 N there isM > 0 such that ifQ 2 P k.RIR/,
then jQ.x/j �MkQkjxjk for every x 2 R, jxj � 1 (it follows easily e.g. from [HJ, Fact 1.42]). By (5) there are 0 < ı � minfr; 1g
and n0 2 N such that jR.0; thn/j � "

4M
jt jk and jR.0; th/j � "

4M
jt jk for all jt j � ı and n � n0. Hence, applying the above fact

to Q.t/ D qn.ıt/, we obtain

" � jqn.1/j �
M

ık
sup
jt j�ı

jqn.t/j �
M

ık

�
sup
jt j�ı

jR.0; thn/j C !.ıkhn � hk/C sup
jt j�ı

jR.0; th/j
�
�
"

2
C
M

ık
!.ıkhn � hk/

for all n � n0. This is a contradiction.

We will need the following easy fact, which is well-known for X D Y D R (see e.g. [DS, p. 215, (5.2)]).
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Proposition 16. For each k 2 N, ! 2 M, C > 0, R � r > 0 such that !.R/ < C1, and j 2 f1; : : : ; kg there is
Mj .k; !; r; R; C / > 0 such that ifX , Y are normed linear spaces,U � X is an open convex set such thatU.a; r/ � U � U.a;R/
for some a 2 U , and f 2 C k;!.U IY / satisfies kf .x/k � C for x 2 U.a; r/, then kd jf .x/k �Mj .k; !; r; R; C / for x 2 U .

Proof. First we claim that for j D k we can take Mk.k; !; r; R; C / D
.4k/kC

rk
C !.r/C !.R/. For a fixed h 2 SX and � 2 BY �

we put g.t/ D � B f .a C th/ for t 2 .�r; r/. Using Facts 3 and 4 it is easy to see that g 2 C k;!
�
.�r; r/

�
. Put s D r

2k
. It is a

well-known fact (see e.g. [Z, Exercise 5.3.14] or [DS, p. 195, (3.34)]) that there is � 2 .0; r/ such that g.k/.�/ D �ksg.0/

sk
. It follows

from (1) that jg.k/.�/j � 2kC

sk
and so jg.k/.0/j � jg.k/.�/j C jg.k/.0/ � g.k/.�/j � 2kC

sk
C !.r/. Using Facts 3 and 4 again we

get
ˇ̌
�
�
dkf .a/Œh�

�ˇ̌
D jg.k/.0/j � .4k/kC

rk
C !.r/. By taking the supremum over all h 2 SX and � 2 BY � we finally obtain

kdkf .a/k � .4k/kC

rk
C !.r/. Now for any x 2 U we have kdkf .x/k � kdkf .a/k C kdkf .x/ � dkf .a/k �Mk.k; !; r; R; C /.

Next, fix j 2 N, C > 0, and R � r > 0. It is sufficient to show the existence of Mj .k; !; r; R; C / for k � j and ! 2M with
!.R/ < C1. We have already proved it for k D j . Now assume that k > j and Mj .k � 1; Q!; r; R; C / exists for all Q! 2M with
Q!.R/ < C1. To prove the existence of Mj .k; !; r; R; C / let ! 2M and f 2 C k;!.U IY / satisfying the assumptions be given.

We already know that kdkf .x/k �Mk.k; !; r; R; C / for x 2 U . Hence by Fact 1, kDkf .x/k � kk

kŠ
Mk.k; !; r; R; C / for x 2 U .

It follows that Dk�1f (and consequently also dk�1f ) is Lipschitz with constant k
k

kŠ
Mk.k; !; r; R; C / and so f 2 C k�1; Q!.U IY /,

where Q!.t/ D kk

kŠ
Mk.k; !; r; R; C / � t . Thus we may set Mj .k; !; r; R; C / DMj .k � 1; Q!; r; R; C /.

ut

Let X be a normed linear space. Recall that a set A � BX� is called �-norming, � � 1, if sup�2A �.x/ �
1
�
kxk for each

x 2 X .

Theorem 17. Let X , Y be normed linear spaces, U � X open, f W U ! Y a locally bounded mapping, k 2 N, ! 2 M, and
A � BY � a �-norming set. If � B f 2 C k;!.U / for each � 2 A, then f 2 C k;�!.U IY /.

Proof. By passing to the completion of Y we may assume without loss of generality that Y is a Banach space.
We prove the theorem by induction on k. More precisely, let X be a normed linear space and U � X an open set; for each

k 2 N we prove the following statement: If Y is a Banach space, A � BY � a �-norming set, ! 2M, and f W U ! Y a locally
bounded mapping satisfying � B f 2 C k;!.U / for each � 2 A, then f 2 C k;�!.U IY /.

First assume that k D 1. Fix x 2 U . To prove that the derivative Df.x/ exists we first show that for a given h 2 X the limit
L.h/ D limt!0

1
t

�
f .x C th/ � f .x/

�
exists using the Cauchy criterion. By the Mean value theorem, for any � 2 A, ı > 0

sufficiently small, and s; t 2 .�ı; ı/ n f0g there are �; � 2 .�ı; ı/ such thatˇ̌̌̌
1

t

�
� B f .x C th/ � � B f .x/

�
�
1

s

�
� B f .x C sh/ � � B f .x/

�ˇ̌̌̌
D
ˇ̌
D.� B f /.x C �h/Œh� �D.� B f /.x C �h/Œh�

ˇ̌
� khk!.2khkı/:

Hence for s; t 2 .�ı; ı/ n f0g1t �f .x C th/ � f .x/� � 1s �f .x C sh/ � f .x/�
 � � sup

�2A

ˇ̌̌̌
�

�
1

t

�
f .x C th/ � f .x/

�
�
1

s

�
f .x C sh/ � f .x/

��ˇ̌̌̌
D � sup

�2A

ˇ̌̌̌
1

t

�
� B f .x C th/ � � B f .x/

�
�
1

s

�
� B f .x C sh/ � � B f .x/

�ˇ̌̌̌
� �khk!.2khkı/:

(6)

This clearly implies the existence of L.h/. From the definition of L.h/ clearly �.L.h// D D.� B f /.x/Œh� for any � 2 A. Since
A separates the points of Y , it easily follows that L is linear. Finally, for any h 2 X sufficiently small we can set t D 1 and pass to
the limit as s ! 0 in (6) to obtain kf .xCh/�f .x/�L.h/k � �!.2khk/khk, which implies that L is bounded andDf.x/ D L.
Also, for any x; y 2 U using Fact 4 we can estimateDf.x/�Df.y/ � sup

h2BX

� sup
�2A

ˇ̌
�
�
Df.x/Œh��Df.y/Œh�

�ˇ̌
D � sup

�2A

sup
h2BX

ˇ̌
D.� Bf /.x/Œh��D.� Bf /.y/Œh�

ˇ̌
� �!.kx�yk/:

To continue the induction, assume that the statement holds for k � 1 and the assumptions of the statement for k are satis-
fied. Fix x 2 U and let r; C > 0 be such that kf .y/k � C for y 2 U.x; r/ and !.r/ < C1. By Proposition 16 for each
� 2 A the mapping dk.� B f / is bounded by Mk.k; !; r; r; C / on U.x; r/. Hence kDk.� B f /.y/k � kk

kŠ
Mk.k; !; r; r; C /

for y 2 U.x; r/ by Fact 1. It follows that Dk�1.� B f /, and consequently also dk�1.� B f /, is Lipschitz with constant
kk

kŠ
Mk.k; !; r; r; C / on U.x; r/. Thus the inductive hypothesis (used for the modulus Q!.t/ D kk

kŠ
Mk.k; !; r; r; C / � t ) yields that

f 2 C k�1
�
U.x; r/IY

�
. LetW �

�
L.k�1X IY /

�� be the set of all functionals for which there exist � 2 A and h1; : : : ; hk�1 2 BX
such that  .M/ D �

�
M.h1; : : : ; hk�1/

�
for M 2 L.k�1X IY /. Then W is clearly a �-norming set. We set g D Dk�1f

on U.x; r/. For any  2 W determined by � 2 A and h1; : : : ; hk�1 2 BX , and any y 2 U.x; r/ using Fact 4 we ob-
tain . B g/.y/ D

�
� B Dk�1f .y/

�
Œh1; : : : ; hk�1� D

�
Dk�1.� B f /.y/

�
Œh1; : : : ; hk�1� D

�
" B Dk�1.� B f /

�
.y/, where

" 2
�
L.k�1X IR/

�� is the operator of evaluation ".M/ DM.h1; : : : ; hk�1/. ThusD. Bg/.y/Œh� D D
�
"BDk�1.�Bf /

�
.y/Œh� D

"
�
D.Dk�1.�Bf //.y/Œh�

�
D Dk.�Bf /.y/Œh; h1; : : : ; hk�1�, again by Fact 4. From Fact 1 it follows that Bg 2 C 1;m!.U.x; r//,
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where m D kk

kŠ
. Thus by the first step of the induction applied to the (continuous) mapping g, the �-norming set W , and the

modulus N! D m! we obtain that Dg D Dkf exists on U.x; r/.
To finish the proof, for any x; y 2 U using Fact 4 we can estimatedkf .x/�dkf .y/ � sup

h2BX

� sup
�2A

ˇ̌
�
�
dkf .x/Œh��dkf .y/Œh�

�ˇ̌
D � sup

�2A

sup
h2BX

ˇ̌
dk.�Bf /.x/Œh��dk.�Bf /.y/Œh�

ˇ̌
� �!.kx�yk/:

ut

Definition 18. Let N 2 N and e > 0. We say that an open subset U of a normed linear space has the .N; e/-uniform convex
chain property (or .N; e/-UCC property) if for each x; y 2 U there is a polygonal path Œx0; : : : ; xn�, n � N , with x D x0 and
y D xn such that kxj � xj�1k � kx � yk and the segment Œxj�1; xj � lies in an open convex bounded Vj � U with eVj � e for
each j D 1; : : : ; n. We say that U has the uniform convex chain property (or UCC property) if it has the .N; e/-UCC property for
some N 2 N and e > 0.

Theorem 19. Let X , Y be normed linear spaces, U � X an open set with the UCC property, f W U ! Y , k 2 N, and ! 2M.
Suppose that f is C k;!-smooth on every open segment in U and that either

(i) f is locally bounded, or
(ii) X is complete and � B f is Baire measurable for each � 2 Y �.

Then f is C k;m!-smooth on U for some m > 0. More precisely, if U has the .N; e/-UCC property, then we can set m D ckNek ,
where ck > 0 is a constant depending only on k.

Proof. First assume that U is additionally convex and bounded. Clearly f is directionally T k-smooth on U . Let x; x C h 2 U ,
h ¤ 0. Then g.t/ D f

�
xC t h

khk

�
is C k;!-smooth on .�ı; khkCı/ for some ı > 0. Thus Taylor’s theorem (Theorem 5) used on g

at 0 with the increment khk implies that kR.x; h/k D kf .x C h/ � P x;h.1/k D
g.khk/ � P x;h=khk.khk/ � 1

kŠ
!.khk/khkk ,

where the polynomials P x;h 2 P k.RIY / come from the definition of the directional T k-smoothness. If (ii) holds, then since (3)
is clearly satisfied at each a 2 U , the mapping f is weakly T k-smooth on U by Theorem 9.

If (i) holds, then f is continuous. Indeed, for a fixed a 2 U we find r > 0 such that U.a; r/ � U , f is bounded by C > 0

on U.a; r/, and !.r/ < C1. Then Proposition 16 implies that for each v 2 SX the C k;!-smooth mapping t 7! f .a C tv/ is
Lipschitz on .�r; r/ with constant M1.k; !; r; r; C /. Further, since (3) and (5) are clearly satisfied at each a 2 U , Remark 15
implies that f is weakly T k-smooth on U . Consequently, in both cases f is UT k-smooth on U with modulus 1

kŠ
!, so an

application of Theorem 8 yields that f if C k;m! smooth with m D ckekU , where ck depends only on k.
Now assume that U has the .N; e/-UCC property. Fix any x; y 2 U and let Œx0; : : : ; xn�, n � N , be the polygonal path and

V1; : : : ; Vn the convex sets from the definition of the UCC property. Then using the first part of the proof on each of the sets Vj we
obtain

kdkf .x/ � dkf .y/k �

nX
jD1

kdkf .xj / � d
kf .xj�1/k �

nX
jD1

cke
k
Vj
!.kxj � xj�1k/ � Ncke

k!.kx � yk/: (7)

ut

Combining the one-dimensional Marchaud’s theorem together with our criterions for C k;!-smoothness we obtain the following
general version of Marchaud’s theorem:

Theorem 20. Let X , Y be normed linear spaces, U � X an open set with the .N; e/-UCC property, f W U ! Y , and k 2 N.
Suppose that either

(i) f is locally bounded, or
(ii) X is complete, f is bounded on every closed segment in U , and � B f is Baire measurable for each � 2 Y �.

Then f 2 C k.U IY / and for each t � 0

!dkf .t/ � BkNe
k

Z t

0

!kC1.f I s/

skC1
ds;

provided that the integral on the right-hand side is finite for some t > 0. The constant Bk depends only on k.

Proof. For a fixed x 2 U and h 2 SX we define g.t/ D f .xC th/ for t 2 .c; d/, where .c; d/ is the maximal interval containing 0
such that x C th 2 U for all t 2 .c; d/. Further, we set g� D � B g for each � 2 BY � . Then it is easy to see (using (1)) that
!kC1.g� I s/ � !kC1.gI s/ � !kC1.f I s/ for all s 2 Œ0;C1/. Thus !

g
.k/
�

.t/ � �.t/ D Ak
R t
0

!kC1.f Is/

skC1
ds by Theorem 6 used

on each Œa; b� � .c; d/. It follows that g 2 C k;�
�
.c; d/

�
by Theorem 17. Hence Theorem 19 implies that !dkf .t/ � ckNe

k�.t/.
ut

To put the UCC property into perspective, we recall that the strongest currently known formulation of Marchaud’s theorem is for
the bounded LG domains in Rn, which follows from [JS, Theorems 1 and 2]; notice that 0 � t � 1 in [JS, Theorem 1], so the case
of unbounded domains is not covered. It is easily seen that each LG domain as defined in [JS, p. 123] satisfies the uniform cone
condition of [AF, p. 83]. For our purposes it is sufficient to deal only with bounded domains, in which case the definition of the
uniform cone condition simplifies to the following: An open bounded subset U of Rn is said to satisfy the uniform cone condition
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if there exist ı > 0, a finite open covering fUj gmjD1 of the set fx 2 U I dist.x;Rn n U/ � ıg, and a corresponding sequence
fCj g

m
jD1 of cones all linearly isometric to a fixed cone with vertex at the origin, such that x C Cj � U for each x 2 Uj \ U .

Recall that a cone in Rn with vertex at the origin, axis direction v 2 Rn, kvk D 1, aperture angle ' 2 .0; ��, and height � > 0
is the set C D C.v; '; �/ D fx 2 RnI hx; vi � kxk cos '

2
; kxk � �g.

The following proposition shows that in Rn our version of Marchaud’s theorem is more general than that of [JS].

Proposition 21. Let U � Rn be a connected open bounded set that satisfies the uniform cone condition. Then U has the UCC
property. On the other hand, there is a bounded open set in R2 with the UCC property that does not satisfy the uniform cone
condition (and even neither the segment condition nor the weak cone condition, see [AF, pp. 82–84]).

Before proving the proposition we make a couple of simple observations:
(a) If U is an open connected subset of a normed linear space X and K � U is compact, then there is an open connected set

V � X such that K � V � U and dist.V;X n U/ > 0. Indeed, K can be covered by finitely many balls U.xj ; rj /, j D 1; : : : ; n,
such that U.xj ; 2rj / � U . Since U is pathwise connected, there are curves j � U connecting xj and x1, j D 1; : : : ; n. By
the compactness of j there are open connected neighbourhoods Vj of j such that dist.Vj ; X n U/ > 0. Thus it suffices to put
V D

Sn
jD1

�
U.xj ; rj / [ Vj

�
.

(b) Let C � Rn be the cone C D C.v; 2'; �/. If x; y 2 Rn satisfy 0 < kx � yk < � sin'
2Csin' , then ´ D x C 2

sin' kx � ykv 2

.x C IntC/ \ .y C IntC/. Indeed, clearly ´ 2 x C IntC . Further, k´ � yk � k´ � xk C kx � yk D kx � yk
�
2

sin' C 1
�
< �.

Finally, to estimate the angle  between v and ´ � y consider the triangle xy´. Then sin  D h
k´�xk

, where h is the altitude of the
triangle xy´ from the vertex x, and so sin  � kx�yk

k´�xk
D

sin'
2
< sin'.

Proof of Proposition 21. Let U � Rn be a connected open bounded set satisfying the uniform cone condition. Then there is a
cone C � Rn with vertex at the origin and ı > 0 such that the setK D fx 2 U I dist.x;Rn nU/ � ıg is covered by finitely many
open sets Uj , j D 1; : : : ; m, such that x C Cj � U for every x 2 U \ Uj , where Cj is a cone linearly isometric to C . Let � be a
Lebesgue number of the covering fUj \KgmjD1 of K (see [E, Theorem 4.3.31]). Then x C Cj � U and y C Cj � U for some
j 2 f1; : : : ; mg whenever x; y 2 K \ U are such that kx � yk < � .

LetC D C.u; 2'; �/ and let 0 < � � ı be such thatC contains a closed ball of radius �. PutW D fx 2 U I dist.x;RnnU/ > �g.
By (a) above there is an open connected V � Rn such that W � V � U and � D dist.V;Rn n U/ > 0, so � � � � ı. Let
d D diamC and put " D min

˚
�; �; � sin'

2Csin'

	
. By the compactness the set V is covered by balls U.xj ; "2 /, xj 2 V , j D 1; : : : ;M .

We claim that U has the .N; eC /-UCC property, where N D max
˚
d
2

sin' e C d
2

sin' C 1e; 2d
d
"
e CM C 1

	
.

Let x; y 2 U . We distinguish three cases. First assume that kx�yk < " and x 2 V or y 2 V . If x 2 V , then y 2 U.x; �/ � U
and note that for any ball B we have eB D 2 < eC . Clearly, the polygonal path consisting of the segment Œx; y� lies in U.x; �/. If
y 2 V , then we proceed analogously.

Next, if kx�yk < " and x; y 2 U nV , then x; y 2 K and since " � � , there is a coneCj such that xCCj � U and yCCj � U .
Let the axis of Cj be given by the vector v 2 Rn, kvk D 1. Set ´ D x C 2

sin' kx � ykv. Then ´ 2 .x C IntCj / \ .y C IntCj /
by (b) above. Using the compactness of Cj we find t < 0 such that if we set Vx D x C tv C IntCj and Vy D y C tv C IntCj ,
then x; ´ 2 Vx � U and y; ´ 2 Vy � U . Thus by partitioning the segments Œx; ´� and Œ´; y� we can create a polygonal path
between x and y consisting of d 2

sin' e C d
2

sin' C 1e segments of length at most kx � yk such that each of the segments lies in Vx
or Vy . Clearly eVx D eVy D eC .

Finally, we deal with the case kx � yk � ". If x 2 V , then we set wx D x. Otherwise there is a cone Cj such that xCCj � U .
By the assumption there is wx 2 U satisfying B.wx ; �/ � x C Cj . It follows that wx 2 W � V . By shifting the cone slightly we
obtain an open cone Vx � U affinely isometric to IntC such that x;wx 2 Vx . Thus there is a polygonal path between x and wx
that lies in Vx and consists of at most

˙
kwx�xk
kx�yk

�
� d

d
"
e segments of length at most kx � yk. Similarly we construct wy 2 V and a

polygonal path between y and wy with analogous properties.
Now it suffices to notice that there is a polygonal path between wx and wy that consists of at most M C 1 segments of

length at most " � kx � yk such that each segment lies in a ball contained in U . Indeed, recall that V is covered by balls
U.xj ;

"
2
/, j D 1; : : : ;M , and each U.xj ; "/ � U . There are p; q 2 N such that wx 2 U.xp; "2 / and wy 2 U.xq; "2 /. Next, define

A0 D U.xp;
"
2
/ and Al D

S˚
U.xj ;

"
2
/I U.xj ;

"
2
/ \ Al�1 ¤ ;

	
, l 2 N. Clearly, Al D AM�1 for l �M . Since V is connected,

xq 2 AM�1, and hence there is a polygonal path Œxp; xk1 ; : : : ; xks ; xq�, where s �M � 2 and each of its segments is of length
less than ".

On the other hand, consider the following set: Let U0 � R2 be the open triangle with vertices Œ0; 0�, Œ1; 0�, and Œ1;�1�, let
Uj D .2

1�2j ; 22�2j / � .�2�2j ; 2�2j /, j 2 N, and U D
S1
jD0 Uj . Then it is easy to see that for each aj D Œ22�2j ; 2�2j � there

is no segment longer than 5 � 2�2j that lies in U and has aj as an endpoint. Thus the set U does not satisfy the uniform cone
condition (consider the open set from the open covering in the definition that contains the point Œ0; 0� on the boundary of U ).
Similarly it can be seen that U neither satisfies the segment condition nor the weak cone condition of [AF]. On the other hand,
U has the

�
3; 2p

2�1

�
-UCC property. Indeed, eU0 D

2p
2�1

and eUj D 2
p
2 < eU0 , j 2 N. Now assume that x D Œx1; x2� 2 Uj ,

y D Œy1; y2� 2 Uk , 1 � j < k, and x2; y2 � 0. Put u D Œx1;�a� and v D Œy1;�a�, where a D minf2�2k�1; 2�2j � x2g.
Then kx � yk � x1 � y1 > 2�2j and so ku � xk D x2 C a � 2�2j < kx � yk, kv � uk D x1 � y1 � kx � yk, and
ky � vk D y2C a < 2

�2k C 2�2k�1 < 2�2j < kx � yk. Also, Œx; u� � Uj , Œu; v� � U0, and Œv; y� � Uk . The other possibilities
for positions of x; y can be dealt with similarly.

ut



SMOOTHNESS VIA DIRECTIONAL SMOOTHNESS AND MARCHAUD’S THEOREM IN BANACH SPACES 9

Remark 22. We close the paper with the last remark: if U is an open convex subset of a normed linear space X that contains an
unbounded cone, i.e. the set uC

S
t2.0;C1/ tU.a; r/ for some u; a 2 X and r > 0, then U has the

�
1; 2 kakCr

r

�
-UCC property.

Indeed, without loss of generality we may assume that u D 0. Now for any x; y 2 U choose R > 0 such that x; y 2 U.0;R/ and
put V D U.0;R/ \ U . Since V clearly contains the ball U

�
R

kakCr
a; R
kakCr

r
�
, it follows that eV � 2R

R
kakCr

r
D 2 kakCr

r
.
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