
A REMARK ON SMOOTH IMAGES OF BANACH SPACES

PETR HÁJEK AND MICHAL JOHANIS

ABSTRACT. LetX be a Banach space with a non-separable super-reflexive quotient. Then for any separable Banach space Y of dimension
at least two there exists a C1-smooth surjective mapping f W X ! Y such that the restriction of f onto any separable subspace ofX
fails to be surjective. This solves a problem posed by Aron, Jaramillo, and Ransford (Problem 186 in the book [GMZ]).

1. SMOOTH IMAGES

It was shown by Bates [B] that every separable Banach space Y is a range of a C 1-smooth surjection f W X ! Y from any
infinite dimensional separable Banach space X . Moreover, under rather general conditions f can be chosen to be C1-smooth. On
the other hand, it was shown in [Há1] that if X D c0 and Y D `2, then f cannot be C 2-smooth. In the setting of the non-separable
space X D c0.!1/ it turns out ([GHM]) that the existence of C 2-smooth surjections onto `2 depends on the additional axioms
of set theory. In particular, under the continuum hypothesis such surjections easily exist, while under the Martin’s axiom MA!1
(which implies the negation of the continuum hypothesis) there are no such C 2-smooth surjections.

In a recent paper of Aron, Jaramillo, and Ransford, [AJR], the following result was shown: Let � be a set of cardinality at
least continuum c, and suppose there exists a bounded linear operator L W X ! c0.� /, such that L.X/ contains the canonical
basis of c0.� /. Then for any separable Banach space Y of dimension at least two there exists a C1-smooth surjective mapping
f W X ! Y such that the restriction of f onto any separable subspace of X fails to be surjective.

Of course, the result applies in particular to spaces X D c0.c/ or X D p̀.c/, 1 � p <1. As we have seen above, this result
holds for c0.!1/ if we assume the continuum hypothesis, but it fails under MA!1 , as `2 cannot be a range of a C1-smooth
surjection. It is therefore quite natural to ask what happens for X D p̀.!1/ spaces in this respect. The authors in [AJR] speculate
that the result perhaps again depends on additional axioms of set theory. The problem is posed also in the recent monograph of
Guirao, Montesinos, and Zizler, [GMZ, Problem 186].

Corollary 5 in this note gives a solution to this problem. In particular, there is a C1-smooth surjection f W p̀.!1/! Y onto
any separable Banach space Y of dimension at least 2 such that the restriction of f onto any separable subspace of p̀.!1/ fails to
be surjective. Our result is in fact somewhat more general, and applies in particular to all non-separable super-reflexive Banach
spaces.

Before formulating the main theorem we recall some basic definitions on trees. A tree is a partially ordered set .T;�/ with
the property that for every t 2 T the subset fs 2 T I s � tg is well-ordered. For t 2 T we denote by tC the set of all immediate
successors of t , i.e. tC D fu 2 T I s � u if and only if s � tg. For u 2 T we write u� for the unique t 2 T such that u 2 tC, if
such t exists. If a tree has a least element, then we will call this tree rooted. We will assume that the least element of a rooted tree
is designated by 0, unless stated otherwise. The height of an element t 2 T is a unique ordinal ht.t/ with the same order type as
fs 2 T I s � tg. The height of the tree T is defined by sup fht.t/C 1I t 2 T g. A branch of T is a maximal linearly ordered subset
and we denote by B.T / the set of all branches of T . For an ordinal ˛ we denote by T˛ D ft 2 T I ht.t/ D ˛g the ˛th level of the
tree T . For a branch b 2 B.T / we denote b˛ D b \ T˛ . Let � be a cardinal. We say that T is �-branching if cardT0 � � and
card tC � � for each t 2 T .

Let � be a cardinal. We say that a subset S of a topological space X is �-Suslin in X if there is a �-branching tree T of
height ! and closed sets Ft � X , t 2 T such that S D

S
b2B.T /

T1
nD1 Fbn . We remark that !-Suslin sets are called simply

Suslin in the classical terminology and that a classical result states that in Polish spaces Suslin sets (our !-Suslin sets) are precisely
the analytic sets, see e.g. [K, Theorem 25.7].

Some more notation: By B.x; r/, resp. U.x; r/ we denote the closed, resp. open ball in a metric space centred at x and with
radius r . By L.X IY /, resp. P .nX IY / we denote the space of continuous linear operators, resp. continuous n-homogeneous
polynomials from X to Y ; for an introduction to the theory of polynomials see e.g. [HJ, Chapter 1]. If f is a mapping into a vector
space Y , then suppo f D f

�1.Y n f0g/. If x; y 2 Y , then Œx; y� denotes the segment with endpoints x and y.
Our main result is the following:

Theorem 1. Let X be an infinite-dimensional Banach space that admits a C k-smooth bump, k 2 N [ f1g, with each derivative
bounded on X . Let Y be a Banach space with densY � densX , let C � Y be convex, y1 2 C , and C � A � C a densY -Suslin
set. Then there is f 2 C k.X IY / with suppo f � BX such that f .X/ D Œ0; y1� [ A.
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Before proving the theorem we show some of its corollaries. For this we also need the following theorem of Felix Hausdorff,
[Ha, Satz I], see also [J, Exercise 29.8].

Theorem 2. Every uncountable Polish space is a union of an increasing !1-sequence of Gı sets.

Corollary 3. LetX be a non-separable Banach space that admits a C k-smooth bump, k 2 N[f1g with each derivative bounded
on X , and let Y be a separable Banach space with dimY � 2. Then there is f 2 C k.X IY / such that f .X/ D Y but f .Z/ ¤ Y
for any separable subset Z � X .

Proof. Let g 2 Y �, g ¤ 0. Set A1 D fy 2 Y I g.y/ > 0g [ f0g and C D fy 2 Y I g.y/ < 0g [ f0g, and note that C is convex.
Since dimY � 2, kerg is non-trivial and by Theorem 2 there are Gı sets H˛ � kerg, ˛ 2 Œ2; !1/ such that H˛ ¤ Hˇ for
2 � ˛ < ˇ < !1 and kerg D

S
˛2Œ2;!1/

H˛ . Set A˛ D C [ H˛ for ˛ 2 Œ2; !1/ and note that
S
˛2Œ1;!1/

A˛ D Y , but if ˇ
is a countable ordinal, then

S
˛2Œ1;ˇ/A˛ ¤ Y . Let fB˛ � Xg˛2Œ1;!1/ be a uniformly discrete system of balls of radius 1. By

Theorem 1 (using y1 D 0) there are mappings f˛ 2 C k.X IY / such that suppo f˛ � B˛ and f˛.X/ D A˛ for each ˛ 2 Œ1; !1/.
It follows that f D

P
˛2Œ1;!1/

f˛ 2 C
k.X IY / and f .X/ D Y . On the other hand, if Z � X is a separable subset, then Z meets

at most countably many of the balls B˛ and consequently f .Z/ ¤ Y .
ut

To relax the assumption on the existence of a suitable bump in the previous corollary we use the following non-separable
variant of [Há2, Theorem 4]. (We note that in the separable case the assumption is in particular satisfied if there is a non-compact
operator from X into p̀ , see [HJ, Proposition 3.33].)

Theorem 4. Let X be a Banach space for which there is T 2 L.X I p̀.� // for some infinite � and 1 � p < 1 such that
T .BX / contains the canonical basis feg2� . Then for every Banach space Y of density at most card� there exists a polynomial
surjection P 2 P .dpeX IY /.

Proof. Let fxg2� � BX be such that T .x / D e ,  2 � , and let fyg2� be a dense set in BY . Denote m D dpe and define
Q W p̀.� / ! Y by Q.´/ D

P
2� f .´/

my , where f are the canonical coordinate functionals. Then Q 2 P .m p̀.� /IY /

by [HJ, Theorem 1.29] (consider the net indexed by the directed set of all finite subsets of � ). Finally, define P 2 P .mX IY /

by P D Q B T . Now if y 2 Y , then by [HJ, Fact 6.64] there is a sequence fng1nD0 of distinct elements of � such that
y D kyk

P1
nD0 2

�mnyn . Put x D kyk
1
m

P1
nD0 2

�nxn . Then P.x/ D Q
�
kyk

1
m

P1
nD0 2

�nen
�
D kyk

P1
nD0 2

�mnyn D y.
ut

The next corollary in particular solves Problem 186 from [GMZ].

Corollary 5. Let X be a Banach space for which there is T 2 L.X I p̀.� // for some uncountable � and 1 � p < 1 such
that T .BX / contains the canonical basis of p̀.� /. (This holds in particular if X has a non-separable super-reflexive quotient.)
Then for any separable Banach space Y with dimY � 2 there is f 2 C1.X IY / such that f .X/ D Y but f .Z/ ¤ Y for any
separable subset Z � X .

Proof. By Theorem 4 there is a polynomial surjection P W X ! `2.� /. By Corollary 3 there is g 2 C1.`2.� /IY / such that
g.`2.� // D Y but g.Z/ ¤ Y for any separable subset Z � `2.� /. To finish we set f D g B P .

If X is non-separable and super-reflexive, then there is a bounded linear injection from X into p̀.� /, see e.g. [JTZ, proof of
Lemma 2]. The existence of the operator T now follows from Corollary 12 used with � D !1. As for the quotient, see the remark
preceding Corollary 12.

ut

We note that for k > 1 the assumption of Corollary 3 is stronger than the assumption of Corollary 5. Indeed, if X admits a
C 1;1-smooth bump, then it is already super-reflexive.

We now proceed to prove Theorem 1. This will be done with the help of the next two auxiliary statements.

Lemma 6. Let X be an infinite-dimensional Banach space that admits a function ' 2 C k.X I Œ0; 1�/, k 2 N [ f1g, with
each derivative bounded on X , and such that suppo ' � BX and ' D 1 on B.0; r/ for some r 2 .0; 1/. Let T be a rooted
densX-branching tree of height !. Let n0 2 N and f"ng1nDn0 � .0;C1/ be such that "n ! 0. Let Y be a Banach space
and let fytgt2T � Y be such that y0 D 0 and kyt � yt�k � "n

�
. r
4
/k
�n for each t 2 Tn, n 2 N, n � n0 if k 2 N, resp.

kyt � yt�k � "n
�
. r
4
/n
�n if k D1. Then there is f 2 C k.X IY / such that suppo f � BX and

f .X/ D
[

t2T nf0g

Œyt� ; yt � [
˚

lim
n!1

ybn I b 2 B.T /
	
:

Proof. Note that T0 D f0g. By induction on the tree levels we find a collection fxtgt2T � X such that

(i) U
�
xs; .

r
4
/n
�
� U

�
xt ; r.

r
4
/n�1

�
for each n 2 N, t 2 Tn�1, and s 2 tC, and

(ii) for each n 2 N0 the family
˚
U
�
xt ; .

r
4
/n
�	
t2Tn

is uniformly discrete.
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Set x0 D 0. Let n 2 N and assume that fxtgt2Tn�1 are already defined. By [HJ, Fact 6.65] each ball B
�
xt ;

3
4
r. r
4
/n�1

�
, t 2 Tn�1

contains a 2
3
r. r
4
/n�1-separated set fxsgs2tC . Then U

�
xs;

1
4
r. r
4
/n�1

�
� U

�
xt ; r.

r
4
/n�1

�
for each s 2 tC and so (i) holds. Also,

each family
˚
U
�
xs; .

r
4
/n
�	
s2tC

is 1
6
r. r
4
/n�1-uniformly discrete and combining this with (i) and the inductive hypothesis gives (ii).

Next, for n 2 N and x 2 X we set

fn.x/ D

nX
iD1

X
t2Ti

.yt � yt�/'
�
.4
r
/i .x � xt /

�
:

The inner sum is locally finite by (ii) and hence fn 2 C k.X IY / and

Djfn.x/ D

nX
iD1

X
t2Ti

.yt � yt�/.
4
r
/ijDj'

�
.4
r
/i .x � xt /

�
for each x 2 X and j < k C 1. In fact, since Dj'

�
.4
r
/i .x � xt /

�
is non-zero only for x 2 U

�
xt ; .

r
4
/i
�
n B

�
xt ; r.

r
4
/i
�
, by (i)

and (ii) we see that at each x 2 X only one summand overall in the formula for Djfn.x/ can be non-zero and so we have the
following estimate:

kDjfm.x/ �D
jfl .x/k D kD

j.fm � fl /.x/k � max
iDlC1;:::;m

"i
�
. r
4
/j
�i
.4
r
/ijCj � Cj sup

i>l

"i

for x 2 X ,m > l � n0, l � j , and j < kC1, where Cj > 0 is such thatDj' is bounded by Cj . It follows by [HJ, Theorem 1.85]
that fn ! f 2 C k.X IY / uniformly on X .

Finally, note that '
�
X n U.0; r/

�
D '

�
B.0; 1/ n U.0; r/

�
D Œ0; 1�. Hence, by using induction on n and properties (i)

and (ii) we obtain fn
�
B
�
xt ; r.

r
4
/n
��
D yt for each t 2 Tn and f .X n Gn/ D fn.X n Gn/ D

S
1�i�n

S
t2Ti

Œyt� ; yt �,
where Gn D

S
t2Tn

U
�
xt ; r.

r
4
/n
�
. On the other hand, by (i) and (ii), x 2

T1
nD1Gn if and only if there is a branch b 2 B.T /

such that x D limn!1 xbn . It follows that x 2 U
�
xbn ; r.

r
4
/n
�

for each n 2 N and consequently fn.x/ D ybn . Therefore
f .x/ D limn!1 fn.x/ D limn!1 ybn .

ut

Recall that the Lindelöf number of a topological space is the smallest infinite cardinal number � such that every open covering
of this space has a subcovering of cardinality at most �. For metric spaces the Lindelöf number is equal to the density.

Proposition 7. Let .X; �/ be a metric space with Lindelöf number �, U � X , let A � U be a non-empty �-Suslin set,
and let f"ng1nD1 � .0;C1/. Then there is a rooted �-branching tree T of height ! and a family fxtgt2T � U such that
A D

˚
limn!1 xbn I b 2 B.T /

	
and �.xu; xt / < "n for each u 2 tC, t 2 Tn, n 2 N.

Proof. There is a �-branching tree S of height ! and closed sets Fs � U , s 2 S such that Fu � Fs if u 2 sC and
A D

S
b2B.S/

T1
nD1 Fbn . Without loss of generality we may assume that S is rooted and that "n ! 0. We construct the

tree T and the family fxtgt2T by induction on the tree level. The members of T will be pairs .s; ˛/, where s 2 S . We
set the least element of T as .0; 0/ and choose x.0;0/ 2 U arbitrarily. To start the induction we also put "0 D C1. Let
n 2 N0 and assume that Tn and xt , t 2 Tn are already defined. Fix t D .s; ˛/ 2 Tn. For each u 2 sC there is a covering of
U.xt ; "n/ \ Fu by balls U.x.u;/; "nC1/,  2 �˛;u such that x.u;/ 2 U \ U.xt ; "n/, dist.x.u;/; Fu/ < 1

nC1
, and card�˛;u � �.

Set tC D f.u; /I u 2 sC;  2 �˛;ug. Then clearly card tC � � and �.xv; xt / < "n for any v 2 tC.
Now for a given x 2 A there is a branch b 2 B.S/ such that x 2

T1
nD1 Fbn . By induction it is easy to see that for each n 2 N

there is ˇn 2 �ˇn�1;bn such that x 2 Fbn \ U.x.bn;ˇn/; "n/. Put c0 D .0; 0/ and cn D .bn; ˇn/. Then fcng1nD0 is a branch in T
and clearly limn!1 xcn D x. Thus A �

˚
limn!1 xdn I d 2 B.T /

	
.

On the other hand, suppose that c 2 B.T / and x D limn!1 xcn . Then cn D .bn; ˇn/ with fbng1nD0 being a branch in S . Since
dist.xcn ; Fbn/ <

1
n

and Fbn � Fbk if n � k, it follows that x 2 Fbk for each k 2 N and consequently x 2
T1
nD1 Fbn . Thus˚

limn!1 xdn I d 2 B.T /
	
� A.

ut

Proof of Theorem 1. By composing the bump with a suitable smooth real function we obtain r 2 .0; 1/ and ' as in Lemma 6.

Set "n D 1
n

�
r
4

�kn if k 2 N, resp. "n D 1
n

�
r
4

�n2 if k D1. By Proposition 7 there is a rooted densY -branching (and hence also
densX -branching) tree T of height! and a family fytgt2T � C such thatA D

˚
limn!1 ybn I b 2 B.T /

	
and kyt�yt�k < "nC1

for each t 2 Tn, n � 2. By relabelling and adding a node we may assume that T0 D f0g, T1 D f1g, and y0 D 0. By Lemma 6
there is f 2 C k.X IY / such that suppo f � BX and f .X/ D A [

S
t2T nf0gŒyt� ; yt � D Œ0; y1� [ A.

ut

2. CANONICAL BASIS OF p̀.� / IN A LINEAR IMAGE

In this section we look for some sufficient conditions on the space X ensuring that there is a bounded linear operator
T W X ! p̀.� / such that T .BX / contains the canonical basis. For p D 1 we have the following simple and certainly well-known
observation.
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Fact 8. Let X be a Banach space. Then there is T 2 L.X I `1.� // such that T .BX / contains the canonical basis feg2� if and
only if X has a complemented subspace isomorphic to `1.� /.

Proof. (We can take the projection composed with the isomorphism and suitably scaled.
)We can use the lifting property of `1.� / once we realise that T is in fact onto. Indeed, let x 2 BX be such that T .x / D e .

Any y 2 `1.� / is of the form y D
P1
nD1 anen . We can put x D

P1
nD1 anxn , since the series converges absolutely. Then

T .x/ D y.
ut

Now we give several auxiliary technical statements leading finally to the conditions given in Corollary 12.
Let X be a normed linear space and M � X�. We say that a net fx˛g˛2� � X is M -null if lim˛ f .x˛/ D 0 for each f 2M .

Recall that the cofinality of an infinite cardinal �, denoted by cf�, is the smallest cardinal � such that Œ0; �/ has a subset A of
cardinality � with supA D �; � is called regular if cf� D �.

Lemma 9. Let X be a normed linear space and ffg2� � X�. For x 2 X we denote supp x D f 2 � I f .x/ ¤ 0g. Let
� > ! be a regular cardinal and fx˛g˛2Œ0;�/ � X an ffg-null net such that card supp x˛ < � for each ˛ 2 Œ0; �/. Then there is
a subnet fy˛g˛2Œ0;�/ of fx˛g˛2Œ0;�/ with disjoint supports, i.e. suppy˛ \ suppyˇ D ; for any ˛; ˇ 2 Œ0; �/, ˛ ¤ ˇ.

Proof. Since cf� > !, for each  2 � there is G./ 2 Œ0; �/ such that f .x˛/ D 0 for ˛ 2 ŒG./; �/. We define an increasing
F W Œ0; �/! Œ0; �/ such that supp xF.˛/ \ supp xF.ˇ/ D ; whenever 0 � ˛ < ˇ < � by transfinite recursion. Put F.0/ D 0. Let
ˇ 2 .0; �/ and put � D

S
˛2Œ0;ˇ/ supp xF.˛/. Then card� < � since � is regular. Put � D sup2�G./. Then again � < � by

the regularity. We set F.ˇ/ D max
˚
�; sup˛2Œ0;ˇ/.F.˛/C 1/

	
and note that f .xF.ˇ// D 0 for  2 �.

Finally, we put y˛ D xF.˛/ for ˛ 2 Œ0; �/, which clearly defines a (Willard) subnet of fx˛g˛2Œ0;�/.
ut

Proposition 10. Let X be a normed linear space and T 2 L.X I p̀.� // for some � and 1 � p <1. Let � > ! be a regular
cardinal. Then for each weakly null net fx˛g˛2Œ0;�/ � X n kerT there is a subnet fy˛g˛2Œ0;�/ and S 2 L

�
X I p̀.Œ0; �//

�
such

that S.y˛/ D e˛ , ˛ 2 Œ0; �/, where fe˛g˛2Œ0;�/ is the canonical basis of p̀.Œ0; �//.
The same holds if we consider c0.� / and c0.Œ0; �// instead of p̀.� / and p̀.Œ0; �//.

Proof. Consider the sets �n D
˚
˛ 2 Œ0; �/I 1

n
� kT .x˛/k � n

	
. Since cf� > !, there is n 2 N such that card�n D �. Thus by

passing to a subnet we may assume that fT .x˛/g˛2Œ0;�/ is semi-normalised. Since T is w–w continuous, fT .x˛/g˛2Œ0;�/ is weakly
null. By Lemma 9 there is a subnet fy˛g˛2Œ0;�/ of fx˛g˛2Œ0;�/ such that fT .y˛/g˛2Œ0;�/ have disjoint supports. Consequently
there is a bounded linear projection P W p̀.� / ! spanfT .y˛/g and an isomorphism R 2 L

�
spanfT .y˛/gI p̀.Œ0; �//

�
with

R.T .y˛// D e˛ . We may then set S D R B P B T .
ut

Let X be an infinite-dimensional normed linear space and � a cardinal. For an application of Proposition 10 we need to find a
non-trivial weakly null long sequence in X . Notice that if M � X� separates the points of X , then there is no �.X;M/-null long
sequence of length � in X n f0g when cf� > cardM . Indeed, M gives rise to a neighbourhood basis of �.X;M/ of cardinality
cardM and thus any �.X;M/-null long sequence of length � is eventually zero. Consequently, there is no weakly null long
sequence of length � in X n f0g when cf� > w�-densX� and there is no non-zero w�-null long sequence of length !1 in `1. In
particular, if we want to have a weakly null long sequence of length densX in X n f0g with densX a regular cardinal, then the
space X has to be a DENS space, i.e. a space for which w�-densX� D densX .

Recall that a Banach space X is weakly Lindelöf determined (WLD) if and only if there is a one-to-one w�–pointwise
continuous bounded linear operator T W X� ! `c1.� / for some set � , see [AM]. Clearly, a quotient of a WLD space is again
WLD. Note also that a WLD space is a DENS space, [HMVZ, Proposition 5.40].

Lemma 11. Let X be a WLD Banach space and � � densX a cardinal with cf� > !. Then there is a normalised uniformly
separated weakly null net fx˛g˛2Œ0;�/ � X .

Proof. There is a Markushevich basis f.x If /g2� of X that countably supports X�, i.e. the set f 2 � I f .x / ¤ 0g is
countable for every f 2 X�, see e.g. [HMVZ, Theorem 5.37]. It follows that fxF.˛/g˛2Œ0;�/ is weakly null for any one-to-one
mapping F W Œ0; �/! � . Now consider the sets �n D

˚
 2 � I kxk � n; kfk � n

	
. Then card�n � � for some n 2 N. Also,

kx˛ � xˇk �
1
kf˛k
jf˛.x˛ � xˇ /j D

1
kf˛k

�
1
n

for ˛; ˇ 2 �n, ˛ ¤ ˇ. Hence the set fxg2�n is bounded and has a positive
distance from the origin. Thus we may put y D

x
kxk

for  2 �n, and fyg2�n satisfies the requirements.
ut

Note that if X , Y are Banach spaces and Q 2 L.X IY / is onto, then by the open mapping theorem after scaling Q we obtain
R 2 L.X IY / such that BY � R.BX /. Now if T 2 L.Y I p̀.� // is such that T .BY / contains the canonical basis of p̀.� /, then
T BR W X ! p̀.� / has the same property.

Corollary 12. Let X be a Banach space, � > ! a regular cardinal, � a set, and 1 < p <1. Consider the following conditions:
(i) X is WLD and there is T 2 L.X I p̀.� // such that densX= kerT � �.

(ii) X contains a non-zero weakly null net fx˛g˛2Œ0;�/ and there is T 2 L.X I p̀.� // such that dens kerT < �.
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If one of the above conditions is satisfied, then there is S 2 L
�
X I p̀.Œ0; �//

�
such that S.BX / contains the canonical basis

of p̀.Œ0; �//.

Proof. (i) Let Z D X= kerT . According to the remark preceding Corollary 12 it suffices to find the required operator from Z.
Let Q W X ! Z be the canonical quotient mapping. Define yT W Z ! p̀.� / by yT .´/ D T .x/ for some x 2 Q�1.´/. Then
yT 2 L.ZI p̀.� // and it is one-to-one. Also, Z is WLD with densZ � � and hence by combining Lemma 11 and Proposition 10
there exists S 2 L

�
ZI p̀.Œ0; �//

�
such that S.BZ/ contains the canonical basis of p̀.Œ0; �//.

(ii) Since cf� > !, we may assume without loss of generality that fx˛g˛2Œ0;�/ is semi-normalised and contained in BX . Also,
by [T, Theorem 1.1] we may assume that fx˛g˛2Œ0;�/ is a long Schauder basic sequence, and in particular that it is uniformly
separated. Consequently there is ˇ < � such that x˛ … kerT for ˛ � ˇ and we may apply Proposition 10.

ut

Finally, note that `1 has a quotient isomorphic to `2.c/ ([HMVZ, Theorem 4.22]) although it does not contain a non-zero
w�-null long sequence of length !1.
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