ON C! WHITNEY EXTENSION THEOREM IN BANACH SPACES

MICHAL JOHANIS AND LUDEK ZAJICEK

ABSTRACT. Our note is a complement to recent articles [JS1]] (2011) and [JS2] (2013) by M. Jiménez-Sevilla and L. Sdnchez-Gonzélez
which generalise (the basic statement of) the classical Whitney extension theorem for C ! -smooth real functions on R” to the case of real
functions on X ([JSI])) and to the case of mappings from X to Y ([JS2]) for some Banach spaces X and Y. Since the proof from [IS2]
contains a serious flaw, we supply a different more transparent detailed proof under (probably) slightly stronger assumptions on X and Y .
Our proof gives also extensions results from special sets (e.g. Lipschitz submanifolds or closed convex bodies) under substantially weaker
assumptions on X and Y. Further, we observe that the mapping F € C'(X; Y) which extends f given on a closed set A C X can be, in
some cases, C °°-smooth (or C¥-smooth with k > 1) on X \ A. Of course, also this improved result is weaker than Whitney’s result
(for X = R”, Y = R) which asserts that F is even analytic on X \ A. Further, following another Whitney’s article and using the above
results, we prove results on extensions of C 1_smooth mappings from open (“weakly”) quasiconvex subsets of X . Following the above
mentioned articles [JST], [IS2] we also consider the question concerning the Lipschitz constant of F if f is a Lipschitz mapping.

1. INTRODUCTION

Following articles [JS1]] and [JS2] by Mar Jiménez-Sevilla and Luis Sdnchez-Gonzdlez we investigate the validity of versions
of C! Whitney extension theorem for mappings between Banach spaces. The celebrated Whitney extension theorem of [Wh]]
gives a condition which is necessary and sufficient for a function f: A — R, where A C R” is closed, to be extendable to a
function F € C* (R™), k € N U {o0}. For k = 1 this condition (which is a special case of condition (W) from Subsection
can be easily reformulated (see Subsection for a detailed explanation) to the following condition:

(W) There exists a continuous mapping G : A — (R")* such that G(x) is a strict derivative of f at x with respect to A4 for
each x € A.

Using this notation, the Whitney C I extension theorem ([Wh1I| Theorem I] for & = 1) can be reformulated as follows:

Theorem W. If A C R" is closed and f: A — R satisfies condition (W) with G: A — (R™)*, then there is F € C1(R") such
that

(a) Fta= f and
(b) DF(x) = G(x) for each x € A.

Moreover, [Wh1l Theorem I] asserts additionally also the “exterior regularity” of F:
(ER) F is analytic on R" \ A.

However, nowadays it is not generally considered an integral part of Whitney’s extension theorem.

The proof of [Wh1, Theorem IJ is substantially finite-dimensional and John Campbell Wells in [We] showed that Whitney’s
theorem does not hold for functions from C3(£,). (In fact, it does not hold for functions from C3(X), where X is any infinite-
dimensional Banach space; this is proved in [J2]].) However, the C 1 case is different, since the important recent article [JS1]
contains a generalisation of Theorem [W|(without statement (b)) in certain infinite-dimensional Banach spaces. Note that this
interesting result was not quite surprising, since some Whitney-type extension theorems for C 1*!-smooth functions (i.e., functions
whose derivative is Lipschitz) in some infinite-dimensional spaces were proved in [Wel] (1973) and [G] (2009). For references
to other articles on this topic see [AM]], where some extension theorems for (more general) C **-smooth functions on some
super-reflexive Banach spaces are contained (for an alternative treatment see [JKZ], where the classical Whitney-Glaeser condition
for C 1"?-smooth case is used).

It is interesting that Whitney’s proof of Theorem@ known proofs for the C !>!-smooth case in infinite dimensional spaces, and
the proof of [JS1] are mutually quite different. In particular, [Wh1]] and [JS1] use quite different partitions of unity and proofs for
the C *I-smooth case do not use any partition of unity at all.

Note that [JST] generalises results of [AFKI]] (with [AFK2])), where extensions of C !-smooth functions from closed linear
subspaces are considered. Roughly speaking, the proofs of [AFK1] and [JS1] have the following main ingredients:

(a) Lipschitz extendability of Lipschitz functions,

(b) approximability of Lipschitz functions by C !-smooth Lipschitz functions,
(c) the existence of certain C '-smooth Lipschitz partition of unity,

(d) defining the extension as the limit of successive C !-smooth approximations.
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The original aim of our research was to write a short remark which using the results of [JS2] shows that, first, for some spaces
X, Y we can assert that the extension is C *°-smooth on the complement of 4 and, second, that for some X, Y there exists a simple
natural necessary and sufficient condition for extendability of C !-smooth mappings defined on open quasiconvex sets. However,
then we observed that the proof of the main theorems [JS2, Theorems 3.1 and 3.2] (which assume that the pair (X, Y') has property
called (*)) contains an essential flaw (see Subsection[2.5]for details). Subsequently, we realised that combining some methods
from [HJ1] and [JS1] we obtain relatively short and transparent proof of the following result (which is a simplified version of

Theorems 34] and [33).

Theorem 1. Let X, Y be Banach spaces such that the pair (X,Y) has properties (LE) and (LA). Let A C X be closed and
suppose that f: A — Y satisfies condition (W) with a mapping G : A — £(X;Y) (see Definition[23). Then f can be extended
to a mapping g € C1(X;Y).

Moreover, if f is L-Lipschitz and sup,c 4||G(x)|| < L, then we can additionally assert that g is K L-Lipschitz, where the
constant K > 0 depends on X and Y only.

Note that properties (LE) (denoted by (E) in [JS2]), see Definition[8] and (LA;) (equivalent to (A) from [JS2], see Remark [I7)
together imply condition (*) and so Theorem |1/ would follow from [JS2, Theorems 3.1 and 3.2]. We do not know whether [JS2,
Theorems 3.1 and 3.2] hold, however the proofs in [JS2] can probably be changed to correctly prove Theorem [I| (and so this
vector-valued version is essentially due to the authors of [JS2]).

In any case, we believe that our proof of Theorem [I] (resp. Theorems [34] B3) is worth publishing, since it is substantially more
detailed and transparent than proofs from [JS2]] (and [JS1]).

Moreover, our proof (which works with property (LLE) which is weaker than property (LE)) gives extension results from
special sets (e.g. Lipschitz submanifolds and closed convex bodies) under substantially weaker assumptions on X and Y (see
Corollary 4] and Remark [43).

We also prove explicitly the generalisation of condition (b) from Theorem [W] which is contained only implicity in [JST]]
and [JS2]]. (Let us note that none of the articles [JS1]] or [JS2] refers to the seminal article [Wh1].)

Our further contributions, which are new also in the case of real functions, are the following:

In Sectionwe observe that the mapping g € C!(X;Y) which extends the mapping f given on a closed set A C X can be, in
some cases, C ®-smooth (or C*¥-smooth with k > 1) on X \ A. Of course, also this improved result is weaker than Whitney’s
result (ER) which asserts that g is even analyticon X \ 4 (for X = R", Y = R).

In Section [5} following another Whitney’s article [Wh2] and using the above results, we prove results on extensions of
C '-smooth mappings from open (“weakly”) quasiconvex subsets of X .

Finally we note that we give a review (much more complete and detailed than the information in [JS1], [JS2]) concerning the
pairs (X, Y) for which conditions (LE) and (LA,) hold, see Examples[9} 21] and[43] (and Subsection[2.6).

A remark written during the final revision (March 2025)

After the submission of our paper the preprint [JiS|] appeared. It explains how to overcome the flaw in [JS2]] with the additional
assumption (E) (called (LE) above). In particular, the proof of Theorem [I| above using the methods of [JS2] is described.
Surprisingly, the explicit constant K = Ky y in Theoremmobtained in [JiS]] is much better than in [JS1], [JS2], and also better
than in Section 6 of [JZ] (and is possibly even the best possible one). This nice new achievement of [JiS]] led us to the interesting
observation that the second (Lipschitz) part of Theorem[ﬂwith “almost the same” constant K = Ky y as in [JiS] can be rather
easily deduced from the first (C1) part of Theorem [1|via two results from [HJ] (see the proof of Theorem [35|and Remark .
Accordingly, Theorems and[52]in the present version are proved with better Lipschitz constants than the corresponding
results in [JZ], and the whole Section 6 from [JZ] was removed.

2. PRELIMINARIES

2.1. Basic notation. By U(x, r) we denote the open ball in a metric space centred at x with radius r > 0. An L-Lipschitz
mapping is a mapping with a (not necessarily minimal) Lipschitz constant L.

All the normed linear spaces considered are real. Let X, Y be normed linear spaces. By Uy, resp. Bx, resp. Sx we denote the
open unit ball of X, resp. the closed unit ball of X, resp. the unit sphere of X. For x € X and g € X™* we will denote the evaluation
of g at x also by g[x]. By Df(x) we will denote the Fréchet derivative of f: A — Y, A C X, at x € A, its evaluationin 7 € X
will be denoted by Df(x)[h]. By £(X:Y) we denote the space of continuous linear operators from X to Y. By C¥(2;Y) we
denote the vector space of C*-smooth mappings from an open subset £2 C X to Y, as usual we shorten C¥(2) = C¥(2:R).

For a mapping f: X — Y, where X is a set and Y is a vector space, we denote supp, f = f (¥ \ {0}).

Recall that a system {1/ }4c 4 of functions on a set X is called a partition of unity if

e Yyu: X — [0, 1] foralla € A,

e Y Yu(x)=1foreachx € X.
aeA

We say that the partition of unity {{q }oec 4 is subordinated to a covering U of X if {supp, Vo }aca refines U, i.e. foreacha € A
there is U € U such that supp, ¥ C U. Further, in case that X is a topological space we say that the partition of unity {{¥/q }qea
is locally finite if the system {supp, ¥4 }ac4 is locally finite, i.e. if for each point x € X there is a neighbourhood U of x such that
the set {& € A; supp, Yo NU # @} is finite; we say that the partition of unity {¥q }ac 4 is o-discrete if the system {suppo Vo }aca
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is o-discrete, i.e. if we can write A = | ;= A, so that each system {supp, Vo }ac 4, is discrete, i.e. for each point x € X there is
a neighbourhood U of x such that supp, ¥, N U # @ for at most one @ € A,.

2.2. Lipschitz retracts, Lipschitz domains, and Lipschitz submanifolds. Recall that a retraction of a set X onto its subset
Y C X isamapping r: X — Y such that r |y = idy. If such a retraction exists, we say that Y is a retract of X. If X is a metric
space and there is a Lipschitz (resp. L-Lipschitz) retraction of X onto ¥ C X, then we say that Y is a Lipschitz (resp. L-Lipschitz)
retract of X.

Definition 2. A metric space is called an absolute Lipschitz retract if it is a Lipschitz retract of every metric space containing it as
a subspace.

Note that each absolute Lipschitz retract is complete: It is a Lipschitz retract of its completion, but clearly each continuous
retract of a Hausdorff space X is closed in X.
We will need the following obvious facts.

Fact 3. Let X1, X5 be metric spaces, let Y1 be a Lipschitz retract of X1, and let @ : X1 — X» be a bi-Lipschitz bijection. Then
@ (Y1) is a Lipschitz retract of X5.

Proof. The retraction can be given by @ o r o @1, where r: X; — Y] is a Lipschitz retraction onto Y7.
O

Factd. Let X, Y be metric spaces and let Z be a K-Lipschitz retract of X. Then each L-Lipschitz mapping f:Z —Y can be
extended to a K L-Lipschitz mapping f: X — Y.

Proof. Put f = f or,where r: X — Z is a K-Lipschitz retraction onto Z.
O

Lemma 5. Let X be a normed linear space and let A C X be an image of a closed convex bounded set with a non-empty interior
under a bi-Lipschitz automorphism of X. Then A is a Lipschitz retract of X.

Proof. A closed convex bounded set with a non-empty interior is a Lipschitz retract of X by [F]] and so A is also a Lipschitz
retract of X by Fact[3]
O

Following essentially [P, Definitions 2, 3] we define the following rather general notion of a Lipschitz submanifold of a normed
linear space X:

Definition 6. We say that a non-empty subset A of a normed linear space X is a Lipschitz submanifold of X if for each x € 4
there exist an open neighbourhood U of x, two non-trivial normed linear spaces E;, E5, and a bi-Lipschitz mapping @ of U onto
UEl X UE2 C E1 ®co Ex suchthat (A NU) = UE] x {0}.

Obviously, each complemented proper linear subspace of X is a Lipschitz submanifold of X.
A natural generalisation of a “weakly Lipschitz domain” in R” (cf. e.g. [GMMI]) to normed linear spaces is the following:

Definition 7. We say that an open non-empty subset G of a normed linear space X is a Lipschitz domain in X if for each a € 3G
there exist an open neighbourhood V' of a, a normed linear space E, and a bi-Lipschitz mapping @ of V onto Ug x (—1,1) C
E @oo R suchthat (G NV) = Ug x (0,1) and @(0G N V) = Ug x {0}.

Obviously, if G # X is a Lipschitz domain in X, then dG is a Lipschitz submanifold of X (of “codimension 17).

2.3. Lipschitz extension and approximation. In this subsection we discuss facts related to the “ingredients” (a)—(c) mentioned
in Introduction. (Variants of some of these facts are presented already in [JS2].)

2.3.1. Lipschitz extension. The following Lipschitz extension property is an important notion which was studied in a number of
articles.

Definition 8. Let X, Y be normed linear spaces. We say that the pair (X, Y) has property (LE) if there is C > 0 such that for
every A C X every L-Lipschitz mapping f: A — Y has a CL-Lipschitz extension to the whole of X . In this case we say that the
pair (X, Y) has property (LE) with C.

Recall that in [JS2] this property is called (E). Some information about pairs with property (LE) are gathered in the following
example.

Example 9. The classical result of Hassler Whitney [Whll p. 63] and Edward James McShane [MS]] on extension of Lipschitz
functions (cf. [HJ, Lemma 7.39]) implies that the pair (X, R) has property (LE) for any normed linear space X . The following
pairs (X, Y') are known to possess property (LE):
e X is any normed linear space, Y is an absolute Lipschitz retract, see [BL, Proposition 1.2 and the Remark (iii) after]. The
following spaces are known to be absolute Lipschitz retracts:
(@) Loo(I"), see [HI, Fact 7.76]; in particular finite-dimensional spaces.
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(b) Bo(V), the space of all bounded real-valued functions f on a topological space V' with a distinguished point vy € V
for which f(v) — 0 whenever v — vy, considered with the supremum norm. This is a result of Joram Lindenstrauss,
see [Li, Theorem 6]. It follows that c¢o(I") is an absolute Lipschitz retract.

(c) Cyp(P), the space of all bounded uniformly continuous real-valued functions on a metric space P with the supremum
norm. In particular C(K), where K is a metric compact space. This is a result of J. Lindenstrauss, see [BL,
Theorem 1.6].

e X is finite-dimensional, Y is an arbitrary Banach space, see [JLS, Theorem 2]. The method of the proof is in fact the
same as that of the smooth Whitney extension theorem from [Wh1]].

e X is a normed linear space that has an equivalent norm with modulus of smoothness of power type 2, Y is a Banach
space that has an equivalent norm with modulus of convexity of power type 2. This goes back to the classical theorem
of Mojzesz D. Kirszbraun (for X, ¥ Hilbert spaces) and it is a combination of results of Keith Ball ([Bl, Theorem 1.7,
Theorem 4.1]) and Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield ([NPSS, Theorem 1.2]).

On the other hand, there are pairs of spaces that do not have property (LE), for example (£,,{;) for 1 < p < g < oc. This
follows from [N the proof on p. 266-268] if we replace the space £, with £, and take the corresponding Mazur mappings
@: Ly = Ly, 1esp. ¢n: 5127” — E;”, cf. the remark in the proof of [N}, Proposition 5]. Consequently, the pair (X, Y') does not have
property (LE) whenever X contains a subspace isomorphic to £, and Y contains a complemented subspace isomorphic to £, for
some 1 < p < g < oo. In particular, the pair (L, (1), L4(v)) does not have property (LE) if 1 < p < ¢ < oo for any measures u,
v such that both L, (x) and L, (v) are infinite-dimensional (use JAK| Proposition 6.4.1] and its proof).

We remark that in the context of L,-spaces it is an open question whether the pair (Lz([O, 1)), L1 (][O, 1])) has property (LE),
see [NPSS|.

We will prove our extension results using the following localised version of the Lipschitz extension property.

Definition 10. Let X, Y be normed linear spaces and A C X. We say that the pair (A4, Y') has property (LLE) if for every x € A
there is K > 1 such that for each § > 0 there is an open neighbourhood U of x such that U C U(x, §) and each Q-Lipschitz
mapping from U N A to Y can be extended to a K Q-Lipschitz mapping on U'.

Remark 11. Ttis clear that if the pair (X, Y') of normed linear spaces has property (LE), then for every A C X the pair (4, Y) has
property (LLE).

Remark 12. 1f the pair (A, Y) has property (LLE) and B C A is relatively open in A, then the pair (B, Y') also has property (LLE).

Indeed, fix x € B. Let K > 1 be the constant from property (LLE) of (A4, Y) for this x. Let § > 0 be given and let 0 < n < §
be such that U(x,n) N A C B. By the property (LLE) of (A4,Y) there is an open neighbourhood U of x in X such that
U Cc U(x,n) C U(x,§) and each Q-Lipschitz mapping from U N B = U N A to Y can be extended to a K Q-Lipschitz mapping
onU.

Lemma 13. Let X be a normed linear space and suppose that A C X has the following property:
(R) Foreach x € A there exists an open neighbourhood W of x and a Lipschitz retraction from W onto A N W.
Then for each normed linear space Y the pair (A,Y) has property (LLE).

Proof. Let x € A and let W be an open neighbourhood of x and r: W — A N W a Lipschitz retraction. Choose K > 1 such that
r is K-Lipschitz. Let § > 0 be given. Choose 0 < 7 < § such that U(x,n) C W and set U = U(x,n) Nr~'(A N U(x,n)). Since
A N U(x,n) is an open subset of A N W, we obtain that U C U(x, n) is an open neighbourhood of x and r |y is a K-Lipschitz
retraction of U onto ANU(x,n) = ANU. So each Q-Lipschitz mapping f from U N A to Y can be extended to a K Q-Lipschitz
mapping f or [y on U.

O

Remark 14. Note that each Lipschitz retract of an open subset of a normed linear space has property R).

Lemma 15. Let X, Y be normed linear spaces and suppose that A C X is one of the following types:

(a) A is animage of a closed convex bounded set with a non-empty interior under a bi-Lipschitz automorphism of X ;
(b) A is a Lipschitz submanifold of X ;

(c) A is the closure of a Lipschitz domain in X.

Then the pair (A, Y) has property (LLE).

Proof. By Lemmal|13|it is sufficient to prove that A has property (R).

In the case (a) we use Lemma 5] together with Remark [14]

In the case (b), let an arbitrary x € A be fixed and let U, E, E», and @ be as in Definition @ Since UEg, x {0} is clearly a
Lipschitz retract of Ug, x Ug,, Factimplies that A N U is a Lipschitz retract of U. So we have proved that A has property R).

In the case (c), let G C X be a Lipschitz domain in X such that A = G. Consider an arbitrary point ¢ € dG and choose V,
E, and @ as in Definition [7] (with a := x). Then ®(A N V) = Ug x [0, 1). Since Ug x [0, 1) is clearly a Lipschitz retract of
Urg x (—1,1), Factimplies that A N V is a Lipschitz retract of V. Since the case a € G is trivial, we have proved that 4 has
property (R).

O
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2.3.2. Smooth approximation of Lipschitz mappings. The approach used already in [AFK1] is based on the smooth approximation
of Lipschitz mappings; we introduce the following terminology:

Definition 16. Let X, Y be normed linear spaces. We say that the pair (X, Y') has property (LAg), k € N U {00}, if there is
C > 0 such that for any L-Lipschitz mapping f: Uy — Y and any & > 0 there is a C L-Lipschitz mapping g € C¥(Ux:Y) such
that supy, ||/ — gl < e. In this case we say that the pair (X, Y') has property (LA ) with C. We say that X has property (LAg)
(resp. (LAg) with C) if the pair (X, R) has this property.

Clearly, if k > [ and the pair (X, Y') has property (LAg), then it also has property (LA;).

Remark 17. Property (LA;) is equivalent to property (A) of [JS2], i.e. the ability to approximate mappings on the whole
space (Deﬁnitionwith k = 1 and Uy replaced by X). Indeed, = follows from [HJ, Theorem 7.86]. < follows from [HIJ,
Theorem 7.86] again — it suffices to show that (A) implies the assumption of [HJ, Theorem 7.86]: given a Lipschitz h: 2Uy — Y,
using the fact that By is a 2-Lipschitz retract of X (see e.g. [E, Section 2]) we are able to extend % | g, to the whole X and we
can use property (A) to approximate 4 on Uy. (Note that the use of [HJ, Theorem 7.86] is necessary: the space ¥ may not be
complete, so we may not be able to extend f from Uy to By to use the retraction to Bx.)

In a similar vein, it is easy to observe that property (LAg) is equivalent to the ability to approximate mappings on the whole
space (Definition[T6] with Uy replaced by X).

Remark 18. It may seem perhaps more natural to use the formulation as in (A) of [JS2] instead of (LA;). However, our proofs
require precisely the approximation on balls so for us it is actually more natural to use the formulation as in (LA;). The relation of
the constants of properties (A) and (LA1) is as follows: If the pair (X, Y') has property (LA;) with constant C, then for any > 1
it has property (A) with constant nC. This follows from [HIJ, Theorem 7.86]. On the other hand if (X, Y') has property (A) with
constant C, then for any 1 > 1 it has property (LA;) with constant n2C. This is explained in Remark [17] However, if (X, ) has
property (LE) with constant 1, then property (A) with constant C implies property (LA ) also with constant C. This is the case for
example if Y = R, Y = £, (I"),or X and Y are Hilbert spaces. In general we do not know whether property (A) with constant C
implies (LA;) with a better constant than 2C.

Remark 19. It is easy to see that if some pair (X, Y), Y non-trivial, has property (LAg), then X also has (LAy) with the same
constant. Indeed, if f: Ux — R is L-Lipschitz and ¢ > 0, then choose some y € Sy and consider the mapping f Uy = 7Y,
f(x) = f(x)-y.Letg € CK(Ux:;Y) be a CL-Lipschitz g-approximation of f provided by the property (LA ) of the pair (X, Y).
Let F € Y* be a Hahn-Banach extension of the norm-one functional ¢y +> ¢ defined on span{y}. Then g = F o § € C¥(Uy) is
the desired C L-Lipschitz e-approximation of the function f.

Remark 20. Note that property (LAg) with constant C easily implies (via translation and scaling of the domain) that for any
x € X, r > 0, any L-Lipschitz mapping f: U(x,r) — Y, and any & > 0 there is a C L-Lipschitz mapping g € C*¥(U(x,r);Y)
such that supy, | f — gl < e.

Example 21. The following pairs (X, Y') are known to possess property (LAg):

(a) X is such that there are a set I and a bi-Lipschitz homeomorphism @ : X — ¢o(I") into such that the component functions
e; o® e CK(X) forevery y € I', Y is a Banach space, and X or Y is an absolute Lipschitz retract. See [HJ, Theorem 7.79]
with Remark [I7] Particular examples of such pairs are:

(al) X is finite-dimensional, Y is an arbitrary Banach space, and k = oo.

(a2) X = ¢o(I'), Y is an arbitrary Banach space, and k = oo.

(a3) X is separable and admits a C¥-smooth Lipschitz bump, Y is a Banach space, and X or Y is an absolute Lipschitz
retract. See [HJ, Corollary 7.65], cf. [H], Corollary 7.81].

(a4) X is a subspace of L,(u) for some measure 1 and 1 < p < oo, resp. of some super-reflexive Banach lattice with a
(long) unconditional basis or a weak unit, with dens X < w,,, Y is a Banach space that is an absolute Lipschitz retract,
and k = 1. See [HIS| Corollary 29].

(b) X is a Banach space with an unconditional Schauder basis that admits a C¥-smooth Lipschitz bump, Y is an arbitrary Banach
space. See [HJ, Corollary 7.87].

(¢) X is a super-reflexive space, Y is finite-dimensional, and k = 1. See [J1]] combined with Remarksand

In particular, note that if X* is separable, then by [DGZ, Theorem I1.3.1], (a3) above, and Example Eka) the space X has
property (LAy).

2.3.3. Partitions of unity. Smooth approximations theorems are tightly connected with the existence of smooth partitions of unity.
The following lemma is a weaker version of [HJ, Lemma 7.85].

Lemma 22. Let X be a normed linear space with property (LA1) and let 2 C X be open. Then for any open covering U of §2
there is a Lipschitz and C'-smooth locally finite and o -discrete partition of unity on §2 subordinated to U.

Proof. The proof of [H], Lemma 7.85] lacks details, so we give a more elaborated argument. We will use [HJ, Lemma 7.49].
Let @ # G C X be open and put S(G) = {f € C'(G); f isbounded and Lipschitz}. Then S(G) is a partition ring (see
[HJ, Definition 7.47]). Indeed, it is clearly a ring. To show property (i) of a partition ring, let { f,},ea C S(G) be such that
{supp, fy }yea is uniformly discrete. For each y € Alet g, = ¢, fy2 for some suitable constant ¢, > 0 chosen so that g, is
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1-Lipschitz and bounded by 1. Put g = sup, ¢ 4 gy. Obviously g is bounded and Lipschitz and it is easily seen that g € C L(G).
So g € S(G) and clearly supp, g = UVGA suppo fy.

Property (ii): Let f € S(G) and supp, f = U; U U,, where U; and U, are open subsets of G with d = dist(U;, Uz) > 0.
Let L, M > 0 be such that f is L-Lipschitz and | f(x)| < M for each x € G. Consider the function g = yy, f. Then g = f
on the open set G \ U, and g = 0 on some neighbourhood of Us, hence g € C'(G). To see that g is Lipschitz, observe that if
xeUyandy € Up, then |g(x) —g(y)| = |f(x)| <M < %Hx — y||. By inspecting all other (easy) cases we obtain that g is
max{L, %}-Lipschitz and so g € S(G).

Property (iii): Let f € S(G)ande > 0. Let y € C!(R) be suchthat 0 < ¢ < 1,v%(t) = Ofort < & and ¥ (¢t) = 1 for
t > 2e.Put g = o f. Since ¥ is Lipschitz, it follows that g € S(G) and it clearly has the properties required in (iii).

Now to show that (ii) of [HJ, Lemma 7.49] for S = S(£2) is satisfied let V' C W C £2 be bounded open sets satisfying
§ =dist(V, 2\ W) > 0. If W = 2, then we set ¢ = 1 on £2; clearly ¢ € S(£2) and V C supp, ¢ C W. Otherwise put
Sf(x) = dist(x, 2\ W) forx € X.Let R > 0be such that W C U(0, R) and set G = U(0, 2R). Property (LA1) (via Remark[20)
implies that there is a Lipschitz g € C!(G) such that | f(x) — g(x)| < % whenever x € G. By property (iii) of the partition
ring S(G) used with ¢ = % thereis 7 € S(G) suchthath = 0on(GN )\ Wandh =1lonV.Nowputgp =hon 2 NG
and ¢ = 0 on £2 \ G. Then it is easily seen that ¢ € S(§2) (the fact that ¢ is Lipschitz may be seen similarly as in the proof of
property (ii) of the partition ring). Clearly, V' C supp, ¢ C W.

|

2.4. Whitney C 1 conditions. The classical Whitney’s extension condition for C k _smooth functions from [Wh1]] can be in the
C! case easily reformulated in the “coordinate free” terms and this formulation directly generalises to the infinite-dimensional
case. Namely, if X, Y are normed linear spaces and A C X is a closed set, then f: A — Y satisfies Whitney’s (“original”) C!
extension condition, if:

(Wor) There exists a continuous mapping G: A — £(X;Y) such that for each x € A4 and & > 0 there exists § > 0 such that

|f@) = fO) =Gz =yl <ellz—yll
whenever y,z € U(x,8) N A.
To reformulate condition (W) to a more natural form we will use the following notion.

Definition 23. Let X, Y be normed linear spaces, A C X, f: A — Y,and x € A. We say that L € £(X;Y) is a strict derivative
of f at x with respect to A (resp. a strict derivative of f at x) if for each ¢ > 0 there exists § > 0 such that

|f@) = f) =Lz =»)| =ellz— I
whenever y, z € U(x,8) N A (resp. y,z € U(x, §)).

Remark 24.

(a) Let X, Y be normed linear spaces, A C X,and f: A — Y. Clearly L € £(X;Y) is a strict derivative of f at x € A with
respect to A if and only if for each & > 0 there exists § > 0 such that the mapping f — L is e-Lipschitz on U(x, §) N A.

(b) If L is a strict derivative of f at x, then clearly f is Fréchet differentiable at x and Df(x) = L. On the other hand, for
some A it can occur that f has more than one strict derivative at x with respect to A.

(c) Itis well known that if 2 C X is open and f € C!(£2:Y), then Df(x) is a strict derivative of f at x for each x € £2 (cf.
M} p. 19]).

Definition 25. Let X, Y be normed linear spaces, A C X, and f: A — Y. We say that f satisfies condition (W) if there exists a
continuous mapping G: A — £(X;Y) such that for each x € A the linear mapping G(x) is a strict derivative of f at x with
respect to A. In this case we will say that f satisfies condition (W) with G. If f is defined on a set larger than A, then we say that
f satisfies condition (W) on A if the restriction f |4 satisfies condition (W).

The following basic easy fact follows from Remark 24{c).

Fact 26. Let X, Y be normed linear spaces, 2 C X open, A C 2,and f: A — Y. If f can be extended to a mapping
g € CY(82:Y), then f satisfies condition (W) with G = Dg | 4.

Remark 27. Let X, Y be normed linear spaces, A C X, f: A — Y,and g € C'(£2;Y) for some open 2 D A.If f satisfies
condition (W) with G, then f + g |4 satisfies condition (W) with G + Dg }4. This follows from Remark 24| c) and the (obvious)
additivity of (relative) strict derivatives.

In [JS2] the authors use condition (W) (without speaking about strict derivatives or Whitney’s condition) and call it “the mean
value condition”. Our notation comes from the easy fact that conditions (W,,) and (W) are equivalent. Indeed it easily follows
from the inequality

/)= f) =Gz =yl = 1/ (2) = f(¥) =Gz = YIll| < I1G(») = Gl - |z =yl

and the continuity of G (which is assumed both in (W) and (W,)).
Note that by Fact condition (W) is a necessary condition for the existence of a C !-smooth extension so Theorem @] (from
Introduction) could be stated in the form of an equivalence.
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Further note that condition (W) is not easily verifiable, since it postulates the existence of a mapping G; despite this Theorem|[W]
is an important result with many applications. If the set A is in some sense “thick” at each of its points, then f can have at
each x € A at most one strict derivative with respect to A and so (W) holds if and only if f has a strict derivative L(x) at each
point x € A with respect to A and the mapping x + L(x) is continuous. (Note that this continuity is not automatic, see [KZ,
Example 4.14].)

In [JS1], which deals with the case Y = R, the authors use a condition (called (E) there) which is equivalent to (W) (it is clearly
weaker than (W) and the opposite implication follows from the Bartle-Graves selection theorem; cf. [AFK1, Lemma 2]).

2.5. C! extension theorems from [JS1]| and [JS2]. The first published infinite-dimensional Whitney-type C ! extension theorem
[JS1l Theorem A.2] generalises Theorem [W]to the case of real functions on a Banach space X which satisfies approximation
condition (A) (see Remark[T7), which is called (*) in [JST, Theorem A.2]. Note that statement (b) of Theorem|[W]is not formulated
in [JS1, Theorem A.2], but it is contained implicitly in its proof. Moreover, [JS1, Theorem A.2] gives conditions under which
there exists a Lipschitz C !-smooth extension, and so answers a question which was not considered in [WhI].

Note that the main result of [JS1] (Theorem A.2) is contained in the appendix to the first part of the article (which deals with
the extensions from linear subspaces) and the proofs in the appendix are not given fully, but rather there is only an outlined list of
changes to the corresponding (simpler) proofs in the first part. This makes the appendix very hard to follow and verify.

In [IS2]] the authors formulate [JS2, Theorem 3.1], which extends Theorem (without statement (b)) for mappings between
Banach spaces X and Y such that the pair (X, Y') satisfies the following condition:

(*)  There exists Cyp such that for every A C X, for every L-Lipschitz f: A — Y, and every & > 0 there is a C '-smooth and
CoL-Lipschitz g: X — Y such that || f(x) — g(x)|| < e forall x € A.

However, the proof of [JS2| Theorem 3.1] contains a serious flaw. Namely, in the proof of Lemma 3.8 on page 1213, lines 8, 7
from below, the number |[2(x) — A% (x)]| is estimated from above by m. If x € A, (n,0) € Fy and B(n) = 0, then this
estimate follows from (3.5) and the inequality on page 1212, line 8 from below (which holds for z € A) used with z := x. But we
see no possibility to obtain the above estimate in the case when x ¢ A, (n,0) € Fy, and B(n) = 0, or to show that this case is
impossible. It seems that this flaw is related to the fact that Lemma 3.6(iii) is not used anywhere in the proofs.

Our Theorem [34] shows that the generalisation of Theorem [W]holds if we suppose that the pair (X, Y) satisfies conditions
(LA1) and (LE) (called (E) in [JS2]). The conjunction (LE) & (LA;) is very close to condition (*) from [JS2]|. Indeed, the
fact that (LE) & (LA;) implies (*) is trivial. On the other hand, the converse implication holds if Y is a dual space (see [JS2,
Remark 1.3(2)]; recall that (LA;) is equivalent to property (A) from [JS2]). Nevertheless, it is not known whether the equivalence
holds in general. We do not know whether [JS2| Theorems 3.1, 3.2] hold, however we do not see any way how to prove these
theorems without using some assumption on extendability of Lipschitz mappings. On the other hand recall that we believe that the
proofs in [JS2] can be modified to correctly prove Theorem|[I] (which uses the assumption (LE) & (LA) instead of (*)). We also
note that whenever the authors of [JS2]] prove that a concrete pair of spaces satisfies (*), they do it via properties (LE) and (LA).

2.6. Pairs (X, Y) for which C! extension theorems hold. Let X, Y be normed linear spaces. Consider the following statements
(“basic C! Whitney extension theorem”, resp. “Lipschitz C! Whitney extension theorem”):

BW: For each closed set A C X and each mapping f: A — Y which satisfies condition (W) there exists g € C1(X;Y) which
extends f.

LW: There is C > 0 such that for each closed set A C X and each L-Lipschitz mapping f: A — Y which satisfies condition
(W) with G satisfying sup,.c 4| G(x)|| < L there exists a C L-Lipschitz g € C'(X;Y) which extends f.

We present here some facts concerning the following properties of (X, Y) (where X, Y are non-trivial normed linear spaces):

(a) Statement BW holds for (X, Y).
(b) Statement LW holds for (X, Y).
(¢) The pair (X, Y) has both properties (LE) and (LA{).
(d) Condition (*) (see Subsection holds for (X, Y).

We start with the following almost obvious remark.

Remark 28.

(i) If we equip X and Y with equivalent norms, the validity of any of (a)-(d), resp. (LE), resp. (LA;), does not change.
(ii) If one of statements (a)—(d), resp. (LE), resp. (LA1), holds both for (X, Y1) and (X, Y>), then it holds for (X, Y; @ Y2) as
well.

Recall that Theorem gives (c)=(a) and (c)=(b). Recall also that (c¢)=(d), and (c)<>(d) if Y is a dual space (see the last
paragraph of Subsection [2.5)). Further, [JS2, Proposition 2.8] immediately gives that (b)=>(d). So, if Y is a dual space, then
(b)<(c). Thus, the pairs (X, Y) for which statement LW holds are “almost characterised”. But the (more interesting) case of
statement BW is more difficult. By a standard method (cf. [JS1, Corollary A.4 and the note after it] or [|S| Proposition 4.3.10]) we
obtain the following interesting fact: If (a) holds, then X is an Asplund space. Indeed, suppose that (a) holds and choose y € Y
and ¢ € Y* such that ¢(y) # 0. Set A = {0} U (X \ Uyx) and define f: A — Y by f(0) = y and f(x) = 0forx € A\ {0}.
Since f clearly satisfies condition (W), by (a) there is g € C'(X;Y) that extends f. Then ¢ o g is a C '-smooth bump on X and
so X is an Asplund space ([DGZ, Theorem I1.5.3]).
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Consequently, if X is separable, then the following statements are equivalent:

(i) Statement BW holds for the pair (X, R).
(i) X* is separable.
(iii)) The space X has property (LAj).

Indeed, we have just proved (i)=(ii) and (ii)=>(iii) is mentioned at the end of Example 21] Finally, (iii)=>(i) follows from
Theorem[I] since (X, R) always has property (LE) (or from [JSI, Theorem A.2] and Remark [17).

However, for non-separable X no interesting condition equivalent to (i) is known.

The examples of pairs (X, Y) that satisfy both (LE) and (LA ) are given in Example 43| These cover (and generalise) all the
cases presented in [JS2| Corollary 3.4] and [JS1) p. 174], as well as some others not mentioned in [JS2] or [JS1] (items (d)—(f)).

Finally, we remark that we do not know anything concerning the validity of any of the statements (a)—(d) e.g. for the pairs
(co,?2), (Lz([O, 1]), L1 ({0, 1])), or (H, H), where H is a non-separable Hilbert space. For any pair ({,,£,), 1 < p < g < oo,
we know that (c) (and consequently also (b) and (d)) does not hold (Example E]) but we do not know whether (a) holds.

3. PROOF OF THE BASIC EXTENSION RESULTS

In this section we prove the basic C'! extension theorems (Theorem [34|and for mappings defined on arbitrary closed sets as
a consequence of two propositions with more complicated assumptions, which will be used later for extension results from special
sets (which do not follow from these “basic” versions).

The following “mixing lemma” is central to the proof of the main Lemma[30] Its idea is implicitly contained in [JSI Proof of
Lemma 2.3].

Lemma 29. Let X, Y be normed linear spaces such that X has property (LA1) with C > 1. Let V. C X be open, K > 0, and let
u,v € CY(V;Y) be K-Lipschitz. Let E C V. Then for each positive & > sup,.cg||v(x) — u(x)| there is g € CY(V;Y) such that
g=vand Dg = DvonE, ||g(x) —u(x)|| <eforeachx € V,and |Dg(x)| < 4CK foreachx € V.

Proof. Without loss of generality assume that £ # @. Let { = sup,cg[|v(x)—u(x)| and seté = % > 0. By [HI}, Theorem 7.86]
there is i € C (V) that is 3CK-Lipschitz and such that supx€V|/L(x) — (||v(x) —u(x)|| + %)‘ < %, ie Jv(x)—ux)] < pukx) <
lv(x) —u(x)| + g for each x € V. Further, set ¢(t) = % tZH w(s)ds fort € R, where w(t) = 1 fort < e and w(¢) = ¢ for

t > e.Thenclearly p € C1(R),0 < ¢ < 1,9(t) = 1 fort < ¢+ 8, and ¢(t) < % for t > 0. Moreover,
l¢/(1)] < 1 fort > eand |¢/' ()| < 1 forr <e.

Indeed, ¢'(¢) = %(a)(t +6) — a)(t)). By distinguishing the cases t < ¢ —§,6 —6 <t < g, andt > ¢ we can explicitly
compute |¢’(¢)| and easily obtain the required inequalities. Finally, set ¥ = ¢ o and g = u + ¥ - (v — u). Obviously,
g € CY(V;Y). Since u(x) < ¢ + % for x € E, it follows that g = v on a neighbourhood of E and hence Dg = Dv on E.
Next, [|g(x) —u(x)|| < ¥y x)|lv(x) —u(x)|| < fo) |lv(x) —u(x)|| <& whenever x € V is such that u(x) # v(x) (and clearly
lg(x) —u(x)|| = 0 whenever u(x) = v(x)).

Finally, let x € V. Then Dg(x) = Du(x) + ¢'(u(x)) Dp(x) - (v(x) — u(x)) + ¥ (x)(Dv(x) — Du(x)). I u(x) > &, then
|9 (L) - [v(x) =u()| < 7 1(x) = 1, otherwise |¢/ (w(x))] - [[v(x) —u(x)|| < $1t(x) < 1. Therefore

IDgC)l = (1 =y ) Du)ll + 1 [Dpx)]| + ¥ (x) [ Dv(x)]| < K +3CK < 4CK.

O

The proof of the following main lemma is based on a combination of ideas of proofs of [HIJ, Proposition 7.94] (where the
role of G is played by Df) and [HJ, Theorem 7.86] (these results come originally from [HJ1]) together with the mixing lemma
Lemma

Lemma 30. Let X, Y be normed linear spaces such that the pair (X,Y) has property (LA1) with C > 1. Let §2 C X be open, let
A C 2 be relatively closed and suppose that the pair (A, Y') has property (LLE). Let L > 0 and let f: 2 — Y be an L-Lipschitz
mapping that satisfies condition (W) on A with G such that sup,.c 4|G(x)|| < L. Then for any & > 0 there is an 8C? L-Lipschitz
mapping g € C1(§2;Y) such that || f(x) — g(x)|| < eforall x € 2, (f — g) M\ is e-Lipschitz, and |G(x) — Dg(x)|| < & for all
x € A

Proof. Let ¢ > 0 and without loss of generality assume that L > 0 and ¢ < L. Foreach x € £2 \ A4 find r(x) > 0 such that
U(x,2r(x)) C 2\ A. Foreach x € A find K > 1 from property (LLE) and find § > 0 such that U(x,§) C £2, f — G(x) is
gcx -Lipschitz on U(x, §) N A (Remark a)), and [|G(y) — G(x)|| < § foreach y € U(x,8) N A. By property (LLE) there
is a neighbourhood U of x such that U C U(x, §) and the restriction of the mapping f — G(x) to U N A has an £ -Lipschitz
extension to U. Let r(x) > 0 be such that U(x, 2r(x)) C U. Then the restriction of the mapping f — G(x) to U(x,2r(x)) N A

has an g -Lipschitz extension to U(x, 2r(x)). Note that

IG(y) —Gx)| < ; for each y € U(x,2r(x)) N A. (1
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By Lemma there is a locally finite and o-discrete C !-smooth Lipschitz partition of unity on §2 subordinated to {U(x, r(x));
x € £2}. We may assume that the partition of unity is of the form {{,4 }neN,ac 4, Where foreachn € N the family {supp, Vsq }aca
is discrete in £2. Set I' = N x A. Given y € I" note that

D, (x) = 0 whenever x € §2 \ supp, ¥y, 2)

since if Y, (x) = 0, then v, (which is non-negative) attains its minimum at x. For each y € I" let U, = U(x,, r(x,)) be such that
supp, ¥, C U, and denote V,, = U(x,,2r(x,)). Let L, > 1 be a Lipschitz constant of ,. For x € §2 denote Sy = {y € I';
X € supp, ¥y} and note that if y € Sy, then x € U,,. Since for each n € N the family {supp, ¥na }ac4 is disjoint, there exists
M, C N and ay : M, — A such that

Sy = {(n,ax(n)); ne Mx}. 3)
Fix y = (n,a) € I'. Since the pair (X, ) has property (LA,), there is a C L-Lipschitz mapping u,, € C!(V,;Y) such that

£
| f(x) —uy(x)|| < m for each x € V. (4)

If x), ¢ A, then we set g, = u,,. Now we deal with the case x,, € A. By the definition of r(x, ) there is an ¢-Lipschitz mapping
fy:Vy = Y suchthat f), = f — G(x,) on V), N A. By property (LA) there is an £-Lipschitz mapping v, € C 1(V,;Y) such
that || £, (x) — v, (x)| < ﬁ for each x € V,,. Putv, = v, + G(x,) and note that f —v, = f, — v, on V},, N A. Then,
using also @), we obtain [[vy (x) =1y (X)[| = vy (x) = f(x) + f () —uy ()| = [|0,(x) = f I+ 1L/ (%) =y O < gz
for every x € V}, N A. Therefore by Lemma(used on CL-Lipschitz u, and (L + £)-Lipschitz vy, the set E = V), N A4, and
K = %CL) there is g, € C!(V,;Y) which is 5C? L-Lipschitz (note that V,, is convex) and such that g, = v, and Dg, = Dv,
onV, N Aand

gy (x) —uy () = for each x € V. (5)

&
4.27L,
Since f — gy, = f —vy, = f, — Uy on V), N A, where f, is g=-Lipschitz and v, is £-Lipschitz, it follows that

f—gyis g-Lipschitz onV, NA. (6)
Further, Dg, — G(xy) = Dv, — G(xy) = Dv, on V;,, N A and hence
[Dgy(x) —G(xy)| < % foreachx € V, N A. @)
Finally, in both cases (i.e. x, € A4, resp. x,, ¢ A) using and @) we obtain that
1/ (x) = gy Il = I1f () —uy )l + luy (x) — gy (0| < % for each x € V). ®)

Note that both (6) and (7)) hold trivially also in the case x, ¢ A, since then V, N A = @.
Define g,,: 2 — Y by g, = g, onV, and g, = Oon £2 \ V,. Finally, we define the mapping g: 2 — Y by

8= Z Vy8y-
yell

Since {supp, ¥y }yer is locally finite, given x € §2 there exists § > 0 and a finite F' C I" such that ¢, (y) = Oforeachy € I' \ F
and y € U(x,6). Set Fy = {y € F; x € V,}. Then there exists 0 < §x < § such that y,(y) = O foreach y € I" \ Fy and
y € U(x,8y), and U(x,85) C V, for each y € Fy. Indeed, dist(x, U,) > r(x,) whenever y € F \ Fy and each V), is open. It
follows that g is well-defined and g = ZyeFx Yy 8y = ZyeFx ¥y gy on U(x, 8x). Consequently, g € C1(£2;Y) and

Dg(x) = Y DWyg)(x) = Y_ Yy(x)Dgy(x) + Dy (x) - gy (x) = Y ¥ (x)Dgy(x) + DYy (x) - gy(x)  (9)
yE€Fx yE€FxX VESx

by (note that Sy C Fy). Further, since 1 = Y  .rv¥y, = > cp ¥y on U(x,dy), it follows that . Dy, =
D ZyeFx ¥, = 0on U(x, 8x). Hence, using also (2)), we obtain

> Dyy(x) =0 foreachx € Q. (10)
YESx

Now choose x € £2 and let us compute how far g(x) is from f(x):

LfG) =gl = | Y- ¥y () (f(x) = &y (%))

yell

<Y YOI -g@l<e Y ¥y =

YESx yeSx

where the last inequality follows from (8).
Next we show that (f — g) |4 is e-Lipschitz and g is 8C2 L-Lipschitz. Let x, y € £2. Denote h, = f — g, for short. Then

(/=) = (f =) = Y v =800 = Y Uy 80 = 3 (W (hy () = Yy 1Ay ().

yell yel' y€SXUSy
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Let us estimate the norm of the last sum. For any y € I" the following holds:

H%/(x)hy(x) - ‘//y()’)hy(y)H = ” Yy (x)hy (x) — ‘/fy(x)hy()’)” + ” Yy (X)hy (y) — WV(Y)hy(Y)”
= Yy () [y (x) = hy W + ¥y (x) — ¥, W[y )] (11)
< Yy ()|lhy(x) = hy W) + Lyllx = y[HAy W)
Lety = (n,a) € Sy US,. Ify € Sy \ Sk, then ||1//y(x)h,,(x) — tﬁy(y)hy(y)” < 35w llx — y| by (T1) and (8), as ¥, (x) = 0

and g, (y) = gy (»). Itis easily seen that by the symmetry the same estimate holds if y € Sy \ S,.If y € Sy N S, thenx,y € U,
and we use the fact that g, is 5C2L-Lipschitz on U, and so h, is (5C? + 1) L-Lipschitz on U, . Consequently, by and (),

[y Gy () =9y )y )| = (W9 (DGC? + DL + 55 ) e =¥l (12)
If moreover x, y € A, thenx, y € U, N A, and so ||k, (x) —hy (y)|| < §[lx — y| by (6). Hence “wy(x)hy(x) — vy, (»)hy (¥) || <

(Vy ()5 + 357) lx = yll.
Putting this all together, for x, y € A the above estimates together with (3] yield

||(f—g)(x)—(f—g)(y)H§( Y st Y 3t X (wm(x>§+3fzn))||x—y||

(n,a)eSx\Sy (n,x)€eSy\Sx (n,0)eSxNSy
& & &
=< Loszt X ogmt X wna(x)g)nx—yn
(n,@)eSx (n,0)eSy\Sx (n,0)eSxNSy
& & &
A X5zt X 5550 @ |l -yl <elx -yl
neMy neM, yel’

In the case of general x, y € 2, this time using (T2) we analogously obtain that f — g is (5C? + 2) L-Lipschitz (recall that e < L)
and consequently g is (5C?2 + 3) L-Lipschitz and hence also 8C? L-Lipschitz.
Finally, to estimate the distance between G and Dg fix x € A. Then

IG(x) = Dg)l| = || D ¥y (x)G(x) = ¥y (x) Dgy (x) = Dy (x) - gy (x)

yESx

D Uy (0)(Gx) — Dgy(x)) + Y DYy (x) - (f(x) —gy(x))‘

YESx yeSx
< ) Y ®[GE) =Dy )|+ D 1P Vnarm @ [ £() = gnaymy )|
yeSx neM,
= Y @160 = GG+ 1660) = D&y ) + 3 Lnwstn 3 ——
y€eSx neM, nax(n
& & &
<=+ - v, (x)+ = <e,
<3 6) ygx v 3

where the first equality follows from (9)), the second one from (T0), the first inequality follows from (3], the second one from (8},
and the third one from (T)) and (7).
O

Remark 31. It is not too difficult to see that a slight modification of the proof of the previous lemma shows that it holds also if the
property (LLE) of the pair (A4, Y') is weakened to the following property (A):

For every x € A there is K > 1 such that for each § > 0 and each Q-Lipschitz mapping h: U(x,) N 4 — Y
there is 0 < 1 < § such that for each ¢ > 0 there is a KQ-Lipschitz mapping &: U(x,n) — Y satisfying
|2(y) —h(y)|| < & whenever y € U(x,n) N A.

Consequently, the assumption of (LLE) in the next proposition can also be weakened to the property above. We have however no
application of this weaker assumption so we decided to not use it.

Note also that if a pair of spaces (X, Y) has property (*) from [IS2], then for every A C X the pair (A4, Y) has property (A)
above (and the pair (X, Y) also has (LA;)). So in both Lemma above and Proposition below the conjunction of assumptions
(LA;) and (LLE) can be replaced by property (*) from [JS2]]. Note however that Proposition [32]requires another assumption “(a)”
(of global extendability from A) which probably does not follow from property (*) (in case of non-dual spaces V).

Proposition 32. Let X be a normed linear space and Y a Banach space such that the pair (X, Y) has property (LA1) with C > 1.
Let $2 C X be an open set and let A C 2 be relatively closed such that each component of §2 has a non-empty intersection with A.
Suppose that
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(a) every Q-Lipschitz mapping from A to Y can be extended to a CQ-Lipschitz mapping on §2 and
(b) the pair (A,Y) has property (LLE).

Let L > 0andlet f: A— Y be an L-Lipschitz mapping that satisfies condition (W) with G such that sup,¢ 4||G(x)|| < L. Then
f can be extended to a 16C3 L-Lipschitz mapping g € C1(2;Y) such that Dg = G on A.

Proof. Without loss of generality we assume that L > 0. By recursion we will construct a sequence of mappings gx € C1(£2;Y),
k € N, such that for each n € N the following hold:

(i) gn is LS°L Lipschitz,
(i) H Fx) =Y % gr(x) H < an for eachx €A,
(iii) the mapping f — Y 7_, gk rA 1S 5 —L1psch1tz
(iv) HG(x) Y ke1 Dgr(x) || < 2,1 for each x € A.

For the first step we apply Lemmato a C L-Lipschitz extension of f to £2 (using the assumption (a)) with ¢ = % to obtain
g1 € C1(£;Y) such that (i)—(iv) hold for n = 1. For the inductive step let n > 1 and assume that g1, ..., g,_ are defined and
(1)—(@iv) hold with n — 1 in place of n. Using Remark we see that the mapping f — Zz_ll gk |4 satisfies condition (W) with G =
G— ZZ;i (Dgpr) 4. By the assumption (a) there is F : 2 — Y whichis a 2,‘: -Lipschitz extension of f — Zk 1 8k 14 (weuse
for each x € A4, by Lemmaapphed to F with “L := £L G := G”,

on— on—1°

(iii) of the inductive assumption) Since ||é(x)|| < 2n ==
L

and & = 35 we obtain an & —Llpschltz mapping gn € CY(£2;Y) such that H FO) =35 gr(x) H =|F(x)—gn(x)] < z—n
forallx € A, f =Y 3, gk TA = (F —gn)tais 5 L _Lipschitz, and ||G(x) — > i1 Dgr(x) ” = |G(x) — Dgn(x)|| < an for
all x € A, and so (i)—(iv) hold.

Property (i) implies that ||Dg,(x)| < lezc# for any x € £2 and so the series Y ,.; Dg, converges uniformly on £2.
Property (i) implies that the series Y - ; g» converges on A. Using [D} (8.6.5)] on each component of £2, in which we choose any
xo € A, we obtain that ) oo | g, converges on §2 and when we set g = Y > | gn,then Dg =Y °2  Dgpandso g € C1(2;Y).
Further, (i) implies that g is 16C 3 L-Lipschitz, (ii) implies that g } 4 = f, and (iv) implies that (Dg) }4 = G

O

Proposition 33. Let X be a normed linear space and Y a Banach space such that the pair (X, Y) has property (LA1). Let 2 C X
be open and let A C 2 be relatively closed such that the pair (A,Y) has property (LLE). Suppose that f: A — Y satisfies
condition (W) with G. Then f can be extended to a mapping g € C'(82:Y) such that Dg = G on A.

Proof. For each x € A using the continuity of G and Remark 24{a) we find A > 0 such that U (x,4) C £2, G is bounded and f
is Lipschitz on A N U(x, A). By property (LLE) there is Kx > 1 and an open neighbourhood V, of x such that Vy C U(x, A)
and each Q-Lipschitz mapping from Ve N Ato Y can be extended to a K 0- Llpschltz mapping on V. Let Vy be the union of all
components of V, that have a non- empty intersection with A. Then Vy N A = V, N A and so

each Q-Lipschitz mapping from V; N A to Y can be extended to a Ky Q-Lipschitz mapping on V. 13)

Let 8, > 0 be such that U(x,28x) C Vy. Let {@4 }aca’ be alocally finite C !-smooth partition of unity on §2 subordinated to the
open covering {U(x,8x); x € A} U {2\ A} of 22 (Lemma[22). Set A = {& € A’; supp, po N A # @}. For each a € A choose
Xq € A such that supp, ¢ C U(xy, 8x,) and denote U, = U(xg, 8y, ) and Vy = Vi, .

Now fix an arbitrary « € A. The pair (4 N V4, Y) has property (LLE) by Remark [12{ and f }4ny, satisfies condition
(W) with G M4ny, . So, using also (I3), we can apply Proposition with “Q2 = Vo, A :== AN Vy, f = ftany,”, and
C = max{Ky,,C’}, where C’ is the constant from property (LA;). Hence there is g, € C!(V,;Y) which is an extension of
f tanv, and such that Dgq = G on A N V. Define go: 2 — Y by go = g 0on Vy and go = 0on 2\ V.

Now put g = )", c 4 Paga- Since the partition of unity is locally finite, given x € £2 there is an open neighbourhood W of x
and a finite Fy C A’ such that oy = 0 on W, for @ € A’ \ Fy. Therefore g is well-defined and g = 3, cp 4 Paga On Wy
Moreover, if @ € A, then supp, ¢o C Uy and go € C1(V,; YY), and 50 ¢ 2o € C1(£2;Y). It follows that g € C'(£2;Y). Further,
1= hen o =D ger, Paon Wy. It follows that

Z Dgy(x) =0 foreachx € £2. (14)

a€Fy

To show that g is an extension of f* suppose that x € A is given. Then ¢4 (x) = 0 foreach @ € A’ \ A and foreach @ € A
such that x ¢ U,. Hence

g) =Y ga(0)ga(x) = D 0u(x)f(x) = f(x) Y gulx) = f(x).

aEA aEA aeN
xeUy x€Uqy
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Also, D@y (x) = 0 foreachw € A’ \ A and for each o« € A such that x ¢ Uy. (Notice that D@, (x) = 0 whenever ¢, (x) = 0,
since then ¢, attains its minimum in x.) Therefore, using @]) we obtain that

Dg(x)=D< > waga)m: Y D@aZ)®) = Y. (Da(x): Za(X) + ¢a(x)DZu(x))

aeFNA a€FyNA aeFNA

Y (Deu(x) - Zu(x) + @a(¥)DZa(x) = Y (Dgulx) - galx) + ¢a(x) Dga(x))

aceFxNA ac€FyNA
xeUy x€Uy
= > (Dga(x) f(x) + 0u(x)G(x)) = ( > Dcpa(x)) fx) + ( > wa(x)) G(x) = G(x).
a€Fy a€Fy a€Fy

O

As a simplified version of Proposition [33| we obtain (using Remark the following basic result on C! extension, which
clearly implies the basic part of Theorem I] from Introduction.

Theorem 34. Let X be a normed linear space and Y a Banach space such that the pair (X, Y) has properties (LE) and (LA ).
Let 2 C X be an open set and let A C S2 be relatively closed. Suppose that f : A — Y satisfies condition (W) with G. Then f
can be extended to a mapping g € C1(£2;Y) such that Dg = G on A.

Similarly, from Proposition we would obtain the following Lipschitz version with a rather large Lipschitz constant 16C3L,
which clearly implies the moreover part of Theorem [I| from Introduction. However, using an idea that is implicitly contained in the
monolithic proof of [JiS] we obtain a much better Lipschitz constant.

Theorem 35. Let X be a normed linear space and Y a Banach space such that the pair (X, Y) has properties (LE) with Cg > 1
and (LAy) with Ca > 1. Let §2 C X be an open set and let A C $2 be relatively closed. Suppose that f: A — Y is L-Lipschitz
and satisfies condition (W) with G such that sup,.c 4||G(x)|| < L. Let n > 1. Then f can be extended to an nCaCgL-Lipschitz
mapping g € C1(2:Y) such that Dg = G on A.

In the proof we will utilise the following trick, which comes from the proof of [HJ1, Theorem 14].

Lemma 36. Ler X, Y be normed linear spaces, 2 C X open, and let F,g: 2 — Y and R > P > 0 be such that F is
P-Lipschitz, g is Fréchet differentiable with |Dg(x)|| < R forall x € 2, and | F(x) — g(x)|| < e(x) for all x € $2, where
e(x) < (R— P)dist(x, X \ £2). Then g is R-Lipschitz.

Proof. Let x,y € £2. If the line segment / with end points x and y lies in £2, then ||g(x) — g(¥)|| < R||x — y|| (see e.g. [H]}
Proposition 1.71]). Otherwise there is z € / N (X \ £2). Then

lgx) =gl = llgtx) = FOI + [ Fx) = FOD)II + 1 F(y) — g = e(x) + Pllx — ]l +&(y)
s R=P)lx =zl + Plx =yl +(R=P)lly =zl = Rlx = y|.

O

Proof of Theorem[33] Since the case L = 0 is trivial, we may suppose that L > 0. By Theorem.there is F € C1(2:Y) that is
an extension of f and such that DF = G on A.Put{ = é 141 an < H'—" and let K > 1 be such that2§L+L +L <{L.Forxe A
let7, > Obesuchthat | DF(y)|| < ¢Lforally € U(x, er) Put V= UxeA U(x, ry), which is an open nelghbourhood of A. We
claim that F 'y is ¢ L-Lipschitz. Indeed, take x, y € V. Letu,v € A be such that x € U(u,ry), y € U(v,ry). If y € U(u, Kry)
orx € U(v, Kry), then | F(y) — F(x)|| < ¢L|ly — x||. Otherwise Kry, < ||y —u| < |ly — x| + |x —u| < ||y — x|| + r, and
so (K — 1)ry < ||y — x||. Similarly, (K — 1)r, < ||y — x||. Hence

IFy) = FOl = 1F) = Fl + I1F@) = Fa) | + [F () = FO)ll < CLYy — vl + Lllv — ull + {L{Ju — x||

L+L
L) Iy =l < Ly =

< ELry 4 L(ry + |y — x| 4+ ra) + CLry < (z

Property (LE) implies that there is a {Cg L-Lipschitz extension 4: 2 — Y of F |'y. In particular, 4 |'y is C'-smooth and
hl4 = f.By the combination of Lemmaand [HI, Lemma 7.49, (vi)=(i)] there is ¢ € C!(2) suchthat0 < ¢ < 1,¢ =1
on A, and supp, ¢ C V. (Note that S := C1(£2) is a locally determined partition ring. Indeed, since the local determination
is obvious, by the easy remark preceding [HJ, Lemma 7.49] it is only necessary to show condition (iii) in the definition of
the partition ring, which can be done analogously as it is proved in Lemma for a different ring.) Put ¢ = "T_ICACEL > 0.

By [HJ, Theorem 7.86] there is a IJZF—"CACEL-LipschitZ H € CY(2:Y) such that ||h(x) — H(x)| < e(x) for x € £2, where

e() = min { oo 25 CaCeL dist(x, X \ 2). Set

g(x) = p(x)F(x) + (1 — p(x)) H(x).
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Clearly, g € C'(£2;Y) and g = f on A. Further, Dg(x) = ¢(x)DF(x)+ Do(x)- F(x)+ (1 —(p(x))DH(x) —De(x)-H(x)
for x € £2. Note that Dp(x) = 0 for x € A, resp. x € £2 \ V, since ¢ attains its maximum, resp. minimum, at x. In particular,
Dg(x) = DF(x) = G(x)forx € Aand ||Dg(x)|| = ||DH(x)| < nCaCgL for x € £2\ V. Also,

D) < p()IDF ()| + (1 = ¢(x)) IDH@)|| + [ Do)l F(x) — H(x)]|

147 €
CaCeL(1—- D ——————— < nCaCgL
7 Ca EL(1— () + || <p(x)||”D(p(x)”+1_n ACe

1+
= TULGD(X) +

for x € V. Notice that ||h(x)—g(x)| = ||h(x)— H(x)| < e(x) forx € 2\ V and ||h(x)—g(Xx)| = (1 —go(x))||h(x)—H(x)|| <
e(x) for x € V. Hence ||h(x) — g(x)|| < (nCaCeL — H'T"CACEL) dist(x, X \ £2) for x € £2. Since 4 is %CACEL—Lipschitz,
Lemma [36]implies that g is #Ca Cg L-Lipschitz.

O

Note an interesting feature of the above proof: it shows that if we are able to extend a Lipschitz mapping from A to a C !-smooth
mapping defined on a neighbourhood of A, then using the already known results from [HJ1] we can extend it to a Lipschitz
C '-smooth mapping defined on the whole space such that the Lipschitz constant of the extension is almost optimal. So, curiously,
the whole proof of Theorem [33] goes as follows: first we prove the second (Lipschitz) part of Theorem [I] with some large
constant K, then we use it to prove the first part of Theorem [I] and then we use the first part to prove the second part with an
almost optimal constant K.

Remark 37. We remark that in [JZ, Section 6] there is a version of Theorem@]with a Lipschitz constant of the extension that is
worse, but no more than 4 times than here. Note that the constant obtained in [JiS] looks optically the same as in Theorem 33|
(nC Cg), but whereas our C, is the constant of the approximation on balls, the constant C from [JiS] is the constant of the
approximation on the whole space. As was remarked in Remark [T8] in general “C < Ca < 2C” (for the “optimal constants”), but
in some cases “C = Ca”. However there may be spaces X, Y for which “C < C,”, so it is not impossible that the results in [JiS]]
give for some X, Y a better Lipschitz constant in the case £2 = X. (Note that in [JiS] the extension is considered only from closed
sets to the whole space.)

4. HIGHER ORDER SMOOTHNESS ON THE COMPLEMENT

As we already mentioned, H. Whitney in his extension theorem from [Wh1] actually constructed a function g € C!(R") that
extends f: A — R and is analytic on R” \ A. In this section we show that under certain natural assumptions a similar “exterior
regularity” holds also in the infinite-dimensional case, namely we can construct the extending mapping ¢ € C'(X;Y) so that it is
C*-smooth on X \ A (for some k € N U {oo}, k > 1).

Lemma 38. Let X, Y be normed linear spaces, 2 C X open, A C 2 relatively closed,and F € C'(22;Y). Leth € C'(22\A4;Y)
be such that | F(x) — h(x)| < e(x) and | DF(x) — Dh(x)| < &(x) for all x € 2 \ A, where (x) < dist*>(x, A). Set g = F on
Aandg =hon 2\ A. Theng € C1(2;:Y) and Dg = DF on A.

Proof. Set G = g — F. Clearly, DG(x) = Dh(x) — DF(x) forevery x € 2\ A. Let x € A. We claim that DG(x) = 0. Note
that |G(y)|| < dist?(y, A) for every y € £2. So for any v € X such that x + v € 2 we get

IG(x +v) = G(x) =0l = |G(x + )| = dis?(x + v, 4) < [lx +v—x]|> = [[v]* = o(lv]), v—0.

Further, the continuity of DG on §2\ A is clear. The continuity of DG atany x € A follows from the fact that || DG (y)—DG(x)| =
IDG()| < e(y) < dist?(y, A) < ||y — x]||*> whenever y € 22\ A. Since g = G + F, it follows that g € C'(£:;Y) and
Dg = DF on A.

O

Using Lemmata 38 and [36] under assumption (LA ) we easily obtain improved versions of Proposition [33]and [32] with higher
order smoothness on the complement of A.

Proposition 39. Let X be a normed linear space, Y a Banach space, and k € N U {oo} such that the pair (X, Y') has property
(LAy). Let 2 C X be open and let A C 2 be relatively closed such that the pair (A,Y) has property (LLE). Suppose that
f: A — Y satisfies condition (W) with G. Then f can be extended to a mapping g € C1(§2;Y) such that Dg = G on A and g
is C*-smooth on 2\ A.

Proof. By Propositionthere is F € C'(£2;Y) that is an extension of f and such that DF = G on A. By [HI, Theorem 7.95,
(1)=>(iii)] there is 1 € C¥(£2 \ A:Y) such that || F(x) — h(x)|| < &(x) and || DF(x) — Dh(x)| < e(x) for all x € £ \ A, where
e(x) = dist’(x, A). Setg = F = fonAand g = hon £2 \ A. Then g is C¥-smooth on £2 \ A4, and g € C'(£2:Y) and
Dg = DF = G on A by Lemma/[3§]

O

Proposition 40. Let X be a normed linear space, Y a Banach space, and k € N U {oco} such that the pair (X, Y) has property
(LA1) with C > 1 and moreover it has property (LAy ). Let 2 C X be an open set and let A C §2 be relatively closed such that
each component of §2 has a non-empty intersection with A. Suppose that
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(a) every Q-Lipschitz mapping from A to Y can be extended to a CQ-Lipschitz mapping on §2 and

(b) the pair (A,Y) has property (LLE).

Let L > Oandlet f: A — Y be an L-Lipschitz mapping that satisfies condition (W) with G such that sup, ¢ 4||G(x)|| < L. Then
f can be extended to a 17C 3 L-Lipschitz mapping g € CY(§2;Y) such that Dg = G on A and g is C*-smooth on 2 \ A.

Proof. Since the case L = 0 is trivial, we may suppose that L > 0. Put P = 16C3L and R = 17C3L. By Proposition
there exists a P-Lipschitz mapping F € C1(£2;Y) that is an extension of f and such that DF = G on A. Let e(x) =
min{dist>(x, 4), (R — P)dist(x, X \ £2), R — P} for x € £2 and note that ¢ is continuous and £(x) > 0 for x € 22\ A. By [HI
Theorem 7.95, (i)=>(iii)] there is & € C¥(£2 \ A;Y) such that || F(x) — h(x)| < e(x) and | DF(x) — Dh(x)| < &(x) for all
xeR\A.Setg=F = fonAandg = hon 2\ A. Then g is C¥-smooth on 2\ 4,and g € C'(£2;Y) and Dg = DF = G
on A by Lemma 38}

Further, [[Dg(x)|| = |G(x)|| = L < Rforevery x € Aand [ Dg(x)|| < [[DF(x)| + ||[DF(x) — Dg(x)|| = [|DF(x)|| +
|IDF(x) — Dh(x)|| < P +e(x) < P+ R—P = Rforx € 2\ A. Also, F is P-Lipschitz and || F(x) — g(x)| < e(x) <
(R — P)dist(x, X \ £2) for x € £2. So Lemma[36]implies that g is R-Lipschitz.

O

As a consequence of Proposition we immediately obtain (using Remark our main result for C! extensions.

Theorem 41. Let X be a normed linear space, Y a Banach space, and k € N U {00} such that the pair (X, Y') has properties
(LE) and (LAg ). Let 2 C X be an open set and let A C 2 be relatively closed. Suppose that f: A — Y satisfies condition (W)
with G. Then f can be extended to a mapping g € CY(§2;Y) such that Dg = G on A and g is C*-smooth on 2 \ A.

The proof of the following theorem is essentially the same as that of Proposition 40| except for using Theorem [35]instead of
Proposition [32]

Theorem 42. Let X be a normed linear space, Y a Banach space, and k € N U {oo} such that the pair (X, Y') has properties
(LE) with Cg > 1 and (LA1) with Ca > 1, and moreover it has property (LAy ). Let 2 C X be an open set and let A C 2 be
relatively closed. Suppose that f: A — Y is L-Lipschitz and satisfies condition (W) with G such that sup, ¢ 4||G(x)| < L. Let
n > 1. Then f can be extended to an 1CCg L-Lipschitz mapping g € C'(§2;Y) such that Dg = G on A and g is C*-smooth
on 2\ A.

Proof. Put P = "ZiCACEL and R = nCaCgL. By Theoremthere is a P-Lipschitz F € C'(£2;Y) that is an extension of f
and such that DF = G on A. The rest of the proof is a word for word copy of the proof of Proposition 40}
O

Example 43. Combining the facts from Examples[9]and 21] we conclude that the pair (X, Y') has both properties (LE) and (LA)
in particular in the following cases:

(a) X is finite dimensional, Y is an arbitrary Banach space, and k = oo.

(b) There is a bi-Lipschitz homeomorphism ®: X — c¢o(I") into with C¥-smooth component functions, Y is an absolute
Lipschitz retract.

(c) X is separable and admits a C¥-smooth Lipschitz bump (in particular, X * is separable and k = 1), Y is an absolute Lipschitz
retract.

(d) X is asubspace of L,(u) for some measure i and 1 < p < oo (resp. of some super-reflexive Banach lattice with a (long)
unconditional basis or a weak unit) with dens X < @y, Y is an absolute Lipschitz retract, and k = 1.

(e) X is super-reflexive, Y is finite-dimensional, and k = 1.

(f) X is a Banach space with an unconditional Schauder basis that has an equivalent norm with modulus of smoothness of power
type 2 and admits a C¥-smooth Lipschitz bump, Y is a Banach space that has an equivalent norm with modulus of convexity
of power type 2.

Recall that if a space admits an equivalent C¥-smooth norm, then it also admits a C*-smooth Lipschitz bump (just compose
the norm with a function from C *°(R) with support in [1, 2]).

Using the above we obtain that the following pairs (X, Y') of classical spaces have both properties (LE) and (LAy) (the space
Cup(P) is as in Example [9):

X Y k H follows from
l<p<oo finite-dimensional { (e)
1 < p<oo,dens X < wy (d)
co(I), Loo(I'), Cun(P)
Lp() | 1< p < oo, separable (c), [HJl Th. 5.106]
oo for p € 2N,
—1 for ¢ IN (f), [Lal Cor. p. 128], [AK]
2 < p < o0, separable Ls(v),1<gqg=<2 [P] p Th. 6.1.6], [DGZ

Cor. V.1.2], [HJ Th. 5.106]

co(I) (b)

. co(I"), Loo(I"), Cup(P) 00

C([0, «]), o countable ordinal (c), [HJ, Th. 5.127]
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Some of our examples are more general (namely (f) and the fourth line in the table) than those in [JS2] and (d), (e) (and the first
two lines in the table) are completely new.

Another consequence of Propositions [39)and fi0]is the following result on extensions from special subsets of X in which we do
not assume property (LE).

Corollary 44. Let X be a normed linear space, Y a Banach space, and k € N U {oco} such that the pair (X, Y) has property
(LAg ). Suppose that A C X is one of the following types:
(a) A is animage of a closed convex bounded set with a non-empty interior under a bi-Lipschitz automorphism of X ;
(b) A is a Lipschitz submanifold of X ;
(c) A is the closure of a Lipschitz domain in X .
Suppose that f: A — Y satisfies condition (W) with G. Then f can be extended to a mapping g € C1(X;Y) such that Dg = G
on A and g is C*-smooth on X \ A.
Moreover, if (a) holds, f is Lipschitz, and the mapping G is bounded, then we can additionally assert that g is Lipschitz.

Proof. The basic part directly follows from Proposition 39 and Lemma [I3] If (a) holds, then A is a Lipschitz retract of X by
Lemmal[5} So, using Fact[d] we can apply Proposition 0] with some sufficiently large C > 1.
O

Remark 45. We can apply Corollarye.g. in the case when X = L, (u) separable, 1 < p < oo, and Y is an arbitrary Banach
space with k = oo for p even integer, k = [p] — 1 otherwise (Example 21{b) with [La, Cor. p .128], [AK| Theorem 6.1.6] and
[HJ, Theorem 5.106]). In the case that Y = L,(v) for ¢ > p and X, Y are infinite-dimensional, then the pair (X, Y') does not
have property (LE), see Example[9] and so it is not possible to apply Theorems 41} 2]

5. EXTENSION FROM OPEN SETS

Following Whitney’s article [Wh2]] we will apply the results of preceding sections to obtain results on extension of C !-smooth
mappings from quasiconvex open sets. In fact we will work with more general open sets (which are “weakly quasiconvex”, see
Definition [48).

The following notion of a quasiconvex space is now a standard tool in Geometric Analysis. For the (standard) definition and
properties of the length (variation) of a curve in a metric space see e.g. [Chl.

Definition 46. We say that a metric space (X, p) is c-quasiconvex (where ¢ > 1) if for each x, y € X there exists a continuous
rectifiable curve y: [0, 1] — X such that y(0) = x, y(1) = y,and leny < cp(x, y), where len y is the length of the curve y. We
say that X is quasiconvex if it is c-quasiconvex for some ¢ > 1.

Note that convex subsets of normed linear spaces are 1-quasiconvex.
Remark 47. Tt is well-known and easy to prove that each bi-Lipschitz image of a quasiconvex metric space is quasiconvex.

Definition 48. We say that a subset U of a metric space (X, p) has property (WQ) if for each a € dU there exist r > 0 and ¢ > 1
such that for each x, y € U N U(a, r) there exists a continuous rectifiable curve y: [0, 1] — U such that y(0) = x, y(1) = y,
and leny < cp(x, y).

Note that each quasiconvex subset of a metric space clearly has property (WQ), i.e. it is “weakly quasiconvex”.

Proposition 49. Let X be a normed linear space and Y a Banach space such that the pair (X, Y) has property (LAy). Let U C X
be an open set with property (WQ) such that (U,Y) has property (LLE). Let f € CY(U; Y). Then f can be extended to an
F € CY(X:Y) if and only if the mapping Df : U — £(X:Y) has a continuous extension G: U — £(X:Y).

Proof. = is obvious.
4= First we prove the following claim:

(%) For each a € dU and every ¢ > 0 there exists § > 0 such that “f(y) — f(x)—G(a)]y — x] || < ¢||y — x|| whenever
x,yeU@dNU.

Sofixa € dU and let ¢ > 0. Let r > 0 and ¢ > 1 be from property (WQ). By the continuity of G there is 0 < § < r such that
IDf(z) — G(a)| < 2i whenever z € U(a,3c8) N U. (15)
c

Now let x,y € U(a,8) N U. Since § < r, we can choose a continuous rectifiable curve y: [0,1] — U such that y(0) = x,
y(1) = y,and leny < c¢|x — y|. Itis easy to check that (y) := y([0, 1]) C U(a,3¢§) N U. By Remark 24|c) for each z € U
there is §; > 0 such that

|f() = f) = DF@) —u]| < %Hv —u| wheneveru,v € U(z.5;). (16)

Let A > 0 be a Lebesgue number (see [E} p. 276]) of the covering {U(z,§;); z € (y)} of the compact set (y). By the uniform
continuity of y we choose A > 0 such that ||y(¢) — y(s)|| < A whenever 0 <s <t < 1and¢ — s < A. Further, choose points
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0=ty <t <-+<ty_1 <t, =1lsuchthatt; —t;_y < Afori = 1,...,n and denote x; = y(¢;). Then clearly xg = x,
X, =y, and
n
>l —xica]| < leny < clly —x|. (17)
i=1
The choice of A, A, and ty, ..., t, implies that for each 1 < i < n there exists a point z; € (y) such that x;_;,x; € U(z;,6z,)
and consequently by (T6)
€
| f(xi) = f(xic1) = Df (zi)lxi — x| < Z”xi —Xi-1]- (18)

Using (T8), (13), and we obtain that

n

D (f@) = fxien) = > G@)lxi — xi1]

i=1 i=1

| £) = f(x) = Gla)ly —x]| =

n

D (f(xi) = f(xim1) = Df zi)lxi — xi-1))

i=1

£ £ w
% > lxi = xiall + % D lxi = xicall < elly — x|,
i=1 i=1

n

> (Df(z) — G@)[xi — xi-1]

i=1

IA

+

IA

and claim (x) is proved.

To finish the proof, by Proposition [33|it is sufficient to define an extension f : U — Y of f that satisfies condition (W)
with G. Set f(a) = f(a) fora € U. Now suppose that a € dU. Choose § > 0 corresponding to ¢ = 1 in claim (x). Then
lf)— f) < (||G(a)|| + 1)||y — x|| whenever x, y € U(a,8) N U. It follows that there exists f(a) = limyq xev f(X).

To show that f satisfies condition (W) with G consider an arbitrary a € U. We will show that G(a) is a strict derivative of f
at a with respect to U. Since the case a € U is obvious by Remark C) we suppose that a € dU. Let ¢ > 0. Choose § > 0
corresponding to this ¢ in claim (). If x, y € U(a,§) N U are arbitrary, then we can choose sequences {x,}, {y,} of points from
U(a,§) N U such that x, — x and y, — y. Then

|70) = 7 = G@ly =] = tim | f(a) = fCn) = G@yn = xal[| < lim ellyu = xall = elly = x]].

This completes the proof.
O

Remark 50. The assumption “Df has a continuous extension G : U — £(X;Y)” in the above proposition is equivalent to the
property “limy—4 xev Df(x) exists for each a € 9U”. This follows easily e.g. from [El Lemma 4.3.16].

Theorem 51. Let X be a normed linear space, Y a Banach space, and k € N U {oo} such that the pair (X, Y') has properties (LE)
and (LAg). Let U C X be an open set with property (WQ), f € CY(U:Y), and suppose that the mapping Df : U — £(X;Y)
has a continuous extension G: U — £(X:;Y). Then f can be extended to a mapping g € C'(X;Y) such that g is C*-smooth
on X \U.

Proof. The pair (U,Y) has property (LLE) by Remark 11| so f can be extended to a mapping F € C!(X;Y) by Proposition@l
Since F satisfies condition (W) on U by Fact the existence of the desired g follows from Theorem(applied to the mapping
F gz and 2 = X).

O

Theorem 52. Let X be a normed linear space, Y a Banach space, and k € N U {00} such that the pair (X,Y) has properties
(LE) with Cg > 1 and (LA1) with Ca > 1, and moreover it has property (LA ). Let U C X be an open set with property (WQ), let
f € CY(U:Y) be L-Lipschitz, and suppose that the mapping Df : U — £(X;Y) has a continuous extension G: U — £(X;Y).
Let > 1. Then f can be extended to an 1CaCgL-Lipschitz mapping g € CY(X:Y) such that g is C*-smooth on X \ U.

Proof. The pair (U, Y) has property (LLE) by Remark so f can be extended to a mapping F € C'(X:Y) by Proposition@l
Clearly DF = G on U and so F satisfies condition (W) with G on U by Fact Since | Df(x)|| < L for each x € U, it follows
that |G(x)|| < L for each x € U. So the existence of the desired g follows from Theorem (applied to the mapping F' |z and
2 =X).

O

For some more special open sets with property (WQ) we do not need property (LE) (cf. Remark f3]).
Corollary 53. Let X be a normed linear space, Y a Banach space, and k € N U {oco} such that the pair (X, Y) has property
(LAg ). Suppose that U C X is one of the following types:

(a) U is an image of an open convex bounded set under a bi-Lipschitz automorphism of X ;
(b) U is a Lipschitz domain in X .
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Let f € CY(U:Y) and suppose that the mapping Df : U — £(X:Y) has a continuous extension G : U — £(X:Y). Then f
can be extended to a mapping g € C'(X;Y) such that g is C*-smooth on X \ U.
Moreover, if (a) holds and f is Lipschitz, then we can additionally assert that g is Lipschitz.

Proof. We claim that U has property (WQ). In case (a) the claim holds by Remark If (b) holds, choose an arbitrary a € 0U
and then V, E, and @ as in Deﬁnition Since @(U N V') is convex, we obtain that U N V is c-quasiconvex for some ¢ > 1 by
Remark {7} Now choose r > 0 such that U(a, r) C V and consider arbitrary x, y € U N U(a,r) C U N V. Then there exists a
continuous rectifiable curve y: [0,1] — U NV C U such that y(0) = x, y(1) = y,and leny < ¢|y — x||. Thus we have proved
that U has property (WQ).
Now observe that the pair (U, Y) has property (LLE) by Lemma. (with assumption (a) or (c)). So f can be extended to
a mapping F € C!(X;Y) by Proposition Clearly DF = G on U and so F satisfies condition (W) with G on U (Fact.
Moreover, if (a) holds and f is L-Lipschitz, then its (continuous) extension F is L-Lipschitz on U and ||G(x)|| = | DF(x)|| < L
for each x € U. The existence of the desired g now follows from Corollary 4 (applied with A := U and f := F M)
O
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