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Abstract. We address the problem of estimating quantile-based statistical functionals,
when the measured or controlled entities depend on exogenous variables which are not under
our control. As a suitable tool we propose the empirical process of the average regression
quantiles. It partially masks the effect of covariates and has other properties convenient
for applications, e.g. for coherent risk measures of various types in the situations with
covariates.
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1. Introduction

The empirical quantile process and its functionals are applied in many domains
of everyday life. Our main tool is the process of averaged α-regression quantiles,
introduced in [8], which is useful for its ability to mask the influence of covariates.
The trajectories of this process approximate the quantile function of the model errors
even in the presence of nuisance covariates. Their inversions in turn approximate the
parent distribution function. Another related empirical process is that of two-step
regression quantiles, which first estimates the slope components (the effects of co-
variates) by means of R-estimate (rank-estimate) and supplements it with estimating
the intercept component as a quantile of residuals. Both processes are asymptoti-
cally equivalent, and their finite-sample properties suitably supplement each other.
We complete the study with a numerical illustration of both processes, and mention
some possible applications.
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2. Notation and basic concepts

We consider the linear regression model

(2.1) Yni = β0 + x⊤
niβ + eni, i = 1, . . . , n,

where Yn1, . . . , Ynn are observed responses, en1, . . . , enn are independent model er-
rors, possibly non-identically distributed with unknown distribution functions Fi,
i = 1, . . . , n. The covariates xni = (xi1, . . . , xip)

⊤, i = 1, . . . , n, are random or non-
random, and β∗ = (β0,β

⊤)⊤ = (β0, β1, . . . , βp)
⊤ ∈ Rp+1 is an unknown parameter.

We also use the notation x∗
ni = (1, xi1, . . . , xip)

⊤, i = 1, . . . , n.

Recall that the regression α-quantile, 0 6 α 6 1,

β̂∗
n(α) = (β̂n0(α), (β̂n(α))

⊤)⊤ = (β̂n0(α), β̂n1(α), . . . , β̂np(α))
⊤

is a (p+ 1)-dimensional vector defined as a minimizer

(2.2) β̂∗
n(α) = arg min

b∈Rp+1

{ n∑

i=1

[α(Yi − x∗⊤
i b)+ + (1− α)(Yi − x∗⊤

i b)−]

}
,

where z+ = max(z, 0) and z− = max(−z, 0), z ∈ R1.

The solution β̂∗
n(α) = (β̂0(α), β̂(α)

⊤)⊤ minimizes the sum of (α, 1−α) convex com-
binations of positive and negative parts of residuals (Yi−x∗⊤

i b) over b ∈ Rp+1. If the
response Yi represents a loss, then the choice of α depends on the balance between
underestimating and overestimating the respective losses Yi, i = 1, . . . , n. Increas-
ing α ր 1 reflects a greater concern about underestimating losses Y , compared to
overestimating.
The averaged regression α-quantile is the specific weighted mean of components

of β̂∗
n(α), 0 6 α 6 1:

Bn(α) = x∗⊤
n β̂∗

n(α) = β̂n0(α) +
1

n

n∑

i=1

p∑

j=1

xij β̂j(α), x∗
n =

1

n

n∑

i=1

x∗
i .

If the model errors eni are identically distributed with a continuous distribution
function, then the residual Bn(α)−β0−x̄⊤

nβ is asymptotically equivalent to the [nα]-
quantile en:[nα] of the eni, i = 1, . . . , n, as n→ ∞. The advantage of the methodology
based on the averaged regression α-quantile is that it partially suppresses the role of
the unobservable covariates, and so it enables an inference on functionals of Y even
under the nuisance regression with unobservable coefficients.
The behavior of Bn(α) with 0 < α < 1 has been illustrated in [1] and [2], and

summarized in [12]; they showed that Bn(α) is a nondecreasing step function of
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α ∈ (0, 1) with a finite number Jn of breakpoints. The upper bound of Jn is generally
equal to

(
n

p+1

)
= O(np+1). This is a huge number for n increasing; however, Portnoy

in [16] showed that Jn can be much smaller, namely Jn = Op(n log n) as n → ∞,

under some conditions on the design matrix Xn. The most general conditions for
this rate are still an open question.

An alternative two-step regression α-quantile, introduced in [7], differs from β̂∗
n(α)

in that the slope components β are estimated by a specific R-estimate β̃nR. The
R-estimate is invariant to the shift in location and hence independent of the inter-
cept. The intercept component is estimated by the α-quantile of residuals of Yi’s
from β̃nR. The averaged two-step regression quantile B̃n(α) is defined analogously
to Bn(α). Both sequences are asymptotically equivalent; however, the number of
breakpoints of B̃n(α) exactly equals to n (as in the location model), while the num-
ber of breakpoints of Bn(·) can be much larger. The averaged regression quantile
Bn(α) is monotone in α, while the two-step averaged regression quantile B̃n(α) is
monotone under a suitable R-estimate β̃nR. Both Bn(·) and B̃n(·) behave like an
empirical quantile function. As such, they can be inverted and their inversions ap-
proximate the parent distribution function F of the model errors.

The methods based on Bn and on its modifications are nonparametric, thus appli-
cable also to heavy-tailed and skewed distributions. An extension to autoregressive
models is also possible and will be a subject of further study. The autoregression
quantile reflects the behavior based on the past assets, while the averaged regression
quantile tries to mask the past history.

Section 3 is devoted to the finite-sample properties as well as to the asymptotic
properties of the averaged regression quantile process Bn(·), along with its appli-
cations. Section 4 deals with the process of the two-step average regression quan-
tile B̃n(·). An intensive numerical illustration of both processes is given in Section 5.
Section 6 briefly mentions some functionals of the regression quantile process.

3. Behavior of Bn(α) over α ∈ (0, 1)

The minimization (2.2) with α ∈ [0, 1] fixed was treated in [14] as a special linear
programming problem; various modifications of this algorithm were later developed.
Its dual program is a parametric linear program, which can be written as

maximize Y⊤
n â(α)(3.1)

under X∗⊤
n â(α) = (1− α)X∗⊤

n 1⊤
n

â(α) ∈ [0, 1]n, 0 6 α 6 1,
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where

X∗
n =



x∗⊤
n1

. . .

x∗⊤
nn




is of order n× (p+ 1). The components of the optimal solution â(α) = (ân1(α), . . . ,

ânn(α))
⊤ of (3.1), called regression rank scores, were studied in [3], where it is shown

that âni(α) is a continuous, piecewise linear function of α ∈ [0, 1] and âni(0) = 1,
âni(1) = 0, i = 1, . . . , n. Moreover, it follows from (3.1) that â(α) is invariant in the
sense that it does not change if Y is replaced with Y +X∗

nb
∗ for all b∗ ∈ Rp+1.

Let {x∗
i1
, . . . ,x∗

ip+1
} be the optimal base in (3.1) and let {Yi1 , . . . , Yip+1

} be the
corresponding responses in model (2.1). The following theorem shows that Bn(α)

equals a weighted mean of {Yi1 , . . . , Yip+1
}, with the weights based on the regressors.

Theorem 3.1. Assume that the regression matrix X∗
n has full rank p+1 and that

the distribution functions F1, . . . , Fn of model errors are continuous and increasing

in (−∞,∞). Then with probability 1

(3.2) Bn(α) =

p+1∑

k=1

wk,αYik ,

p+1∑

k=1

wk,α = 1

and

(3.3) Bn(α) 6 Bn(1) < max
i6n

Yi,

where the vector Yn(1) = (Yi1 , . . . , Yip+1
)⊤ corresponds to the optimal base of the

linear program (3.1). The vector wα = (w1,α, . . . , wp+1,α)
⊤ of coefficients equals

wα = [n−11⊤
nX

∗
n(X

∗
n1)

−1]⊤, where X∗
n1 is the submatrix of X

∗
n with the rows

x∗⊤
i1
, . . . ,x∗⊤

ip+1
.

P r o o f. The regression quantile β̂∗
n(α) is a step function of α ∈ (0, 1). If α is

a continuity point of the regression quantile trajectory, then we have the following
identity, proven in [8]:

(3.4) Bn(α) =
1

n

n∑

i=1

x∗⊤
i β̂∗

n(α) = − 1

n

n∑

i=1

Yiâ
′
ni(α),

where

â′ni(α)) =
d

dα
âni(α).
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Moreover, (3.1) implies

n∑

i=1

â′ni(α) = −n and
n∑

i=1

xij â
′
ni(α) = −

n∑

i=1

xij ∀ j ∈ {1, . . . , p}.

Notice that â′ni(α) 6= 0 if and only if α is the point of continuity of β̂∗
n(·) and

Yi = x∗⊤
i β̂∗

n(α). To every fixed continuity point α there correspond exactly p+1 such
components with the property that the corresponding x∗

i belongs to the optimal base
of program (3.1). Hence, there exist coefficients wk,α, k = 1, . . . , p+ 1, such that

Bn(α) = − 1

n

n∑

i=1

Yiâ
′
ni(α) =

p+1∑

k=1

wk,αYik .

The equalities Yi = x∗⊤
i β̂∗

n(α) hold just for p + 1 components of the optimal base
x∗
i1
, . . . ,x∗

ip+1
. Let X∗

n1 be the submatrix of X
∗
n with the rows x

∗⊤
i1
, . . . ,x∗⊤

ip+1
and let

(â′1(α))
⊤ = (â′i1(α), . . . , â

′
ip+1

(α)). Then X∗
n1 is regular with probability 1 and

w⊤
α = − 1

n
(â′(α))⊤ =

1

n
1⊤
nX

∗
n(X

∗
n1)

−1.

This and (3.4) imply (3.2). Inequality (3.3) was proven in [6]. �

Let us now consider Bn(α) as a process in α ∈ (0, 1) under the condition that all
model errors eni, i = 1, . . . , n, are independent and equally distributed according to
joint continuous increasing distribution function F. We are interested in the average
regression quantile process

Bn(α) = {n1/2x̄∗⊤
n (β̂∗

n(α)− β̌(α)) ; 0 < α < 1},

where β̌(α) = (F−1(α) + β0, β1, . . . , βp)
⊤ is the population counterpart of the re-

gression quantile. As proven in [3], the process Bn converges to a Gaussian process
in the Skorokhod topology as n → ∞, under mild conditions on F and Xn. More
precisely,

Bn(·) D→ (f(F−1(·)))−1W ∗(·) as n→ ∞,

where W ∗ is the Brownian bridge on (0,1). The convergence holds on every subin-
terval [ε, 1− ε] ⊂ (0, 1).

Under a finite number of observations, the trajectories of Bn(·) are step functions,
nondecreasing in α ∈ (0, 1), and they have a finite number of discontinuities for each
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fixed n. As shown in [2], if Bn(α1) = Bn(α2) for 0 < α1 < α2 < 1, then α2 − α1 6
(p+ 1)/n with probability 1. It means that the length of the interval on which Bn(α)

is constant tends to 0 for n → ∞ and fixed p. Let 0 < α1 < . . . < αJn
< 1 be the

breakpoints of Bn(α), 0 < α < 1, and let −∞ < Z1 < . . . < ZJn+1 < ∞ be the
corresponding values of Bn(α) between the breakpoints. Then we can consider the
inversion F̂n(z) of Bn(α), namely F̂n(z) = inf{α : Bn(α) > z}, −∞ < z <∞.

It is a bounded nondecreasing step function and, given Y1, . . . , Yn satisfying (2.1),
F̂n is a distribution function of a random variable, attaining values Z1, . . . , ZJn+1

with probabilities equal to the spacings of the vector (0, α1, . . . , αJn
, 1). Portnoy [15]

studied the tightness of the empirical process F̂n(·) and showed its convergence
to F (·) under some specific conditions. We recommend F̂n as an estimate of F
and also recommend to weaken the conditions for the convergence. As we illustrate
in the numerical study of Section 4, the approximation is excellent. The process Bn(·)
has many applications; besides estimating various functionals of F as the risk mea-
sures, it enables goodness-of-fit testing about F even in the presence of a nuisance
regression.

4. The averaged two-step regression quantile B̃n(α)

The quantile B̃n(α) has exactly n breakpoints, which is an advantage compared
to Bn(α). In spite of that, both processes are asymptotically equivalent as n→ ∞.

The two-step regression α-quantile treats the slope components β and the inter-
cept β0 separately. The slope component part is an R-estimate β̃nR of β, which is
invariant to the shift in location, hence independent of β0. Its determination starts
with the selection of a nondecreasing rank-score function ϕ(u), u ∈ (0, 1), square-
integrable on (0,1). We can consider two types of rank scores, generated by ϕ:

(1) Exact scores: An(i) = E{ϕ(Un:i)}, i = 1, . . . , n, where Un:1 6 . . . 6 Un:n is an
ordered random sample of size n from the uniform (0,1) distribution.

(2) Approximate scores:

(4.1) either (i) An(i) = n

∫ i/n

(i−1)/n

ϕ(u) du,

or (ii) An(i) = ϕ
( i

n+ 1

)
, i = 1, . . . , n.

The test criteria and estimates based on either of these scores are asymptotically
equivalent as n → ∞; but the rank tests based on the exact scores are locally most
powerful under finite n against pertinent alternatives. The R-estimator β̃nR of the
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slopes is defined as a minimizer of the Jaeckel [5] measure of rank dispersion Dn(b):

(4.2) β̃nR = arg min
b∈Rp

Dn(b),

where Dn(b) =
n∑

i=1

(Yi − x⊤
i b)An(Rni(Yi − x⊤

i b)).

Here Rni(Yi − x⊤
i b) is the rank of the ith residual, i = 1, . . . , n. Dn is a convex

function, piecewise linear in b ∈ Rp.

The intercept component β̃n0(α) of the two-step regression α-quantile is defined
as the [nα]th order statistic of the residuals Yi − x⊤

i β̃nR, i = 1, . . . , n. The two-step
α-regression quantile is then the vector

(4.3) β̃∗
n(α) =

(
β̃n0(α)

β̃nR

)
∈ Rp+1.

The typical choice of ϕ is the following:

(4.4) ϕλ(u) = λ− I[u < λ], 0 < u < 1, λ ∈ (0, 1) fixed,

combined with the approximate scores (ii) in (4.1). These scores were introduced
in [4]; Hájek used the following scores (now known as Hájek’s rank scores):

(4.5) ai(λ,b) =





0 . . . Rni(Yi) < nλ,

Rni(Yi)− nλ . . . nλ 6 Rni(Yi) < nλ+ 1,

1 . . . nλ+ 1 6 Rni(Yi).

The solutions of (4.2) are generally not uniquely determined. We can, e.g., take the
center of gravity of the set of all solutions; however, the asymptotic representations
and distributions apply to any solution.

Define the averaged two-step regression α-quantile as B̃n(α) = x̄∗⊤
n β̃∗

n(α). By (4.2)
and (4.3)

(4.6) B̃n(α) = (Yi − (xi − x̄n)
⊤β̃nR)n:[nα],

hence, it is equal to the [nα]th order statistic of the residuals Yi − (xi − x̄n)
⊤β̃nR,

i = 1, . . . , n. Then B̃n(α) is obviously scale equivariant and regression equivariant.
The R-estimator of the slopes in (4.4) with a fixed λ ∈ (0, 1), independent of α,
guarantees that B̃n(α) is monotone in α, thus invertible. Under general conditions,
B̃n(α) is asymptotially equivalent to Bn(α), hence also asymptotically equivalent to
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en:[nα] + β0 + x̄⊤
nβ, we shall prove under the following mild conditions on F and on

Xn = [xn1, . . . ,xnn]
⊤:

(A1) Smoothness of F : The errors eni, i = 1, . . . , n, are independent and identically
distributed. Their distribution function F has an absolutely continuous density
and positive and finite Fisher information.

(A2) Noether’s condition on regressors:

lim
n→∞

Qn = Q, where Qn = n−1
n∑

i=1

(xi − x̄n)(xi − x̄n)
⊤

and Q is a positive definite p× p matrix; moreover,

lim
n→∞

max
16i6n

n−1(xi − x̄n)
⊤Q−1

n (xi − x̄n) = 0.

(A3) Rate of regressors: max
16i6n

‖xni − x̄n‖ = o(n1/4) as n→ ∞.

We shall prove the asymptotic equivalence for R-estimators based on the score
function ϕλ, 0 < λ < 1. However, an analogous proof applies to an R-estimator
generated by any nondecreasing and square-integrable function ϕ.

Theorem 4.1. Let B̃n(α) = (Yi − (xi − x̄n)
⊤β̃nR)n:[nα] be the two-step aver-

aged α-regression quantile (TARQ) in the model (2.1), with the R-estimator β̃nR

generated by ϕλ in (4.4), λ ∈ (0, 1) fixed. Then, under the conditions (A1)–(A3),

(i) n1/2[(B̃n(α)− β0 − x̄nβ)− en:[nα]] = op(1)(4.7)

(ii) n1/2|B̃n(α)−Bn(α)| = op(1)(4.8)

as n→ ∞, uniformly over α ∈ (ε, 1− ε) ⊂ (0, 1) for all ε ∈ (0, 12 ).

P r o o f. Consider the [nα]-quantile of residuals

rni = eni − (xi − x̄n)
⊤(β̃nR − β) = Yi − (xi − x̄n)

⊤β̃nR − β0 − x̄⊤
nβ, i = 1, . . . , n.

Under conditions (A1)–(A3), the R-estimator β̃nR admits the following asymptotic
representation:

(4.9) n1/2(β̃nR − β)

= n−1/2(f(F−1(λ))−1Q−1
n

n∑

i=1

(xi − x̄n)(λ− I[eni < F−1(λ)]) + op(n
−1/4),

264



hence ‖n1/2(β̃nR − β)‖ = Op(1). The details for (4.9) can be found in [10]. The
[nα]-quantile ãn(α) of rn1, . . . , rnn is a solution of the minimization

ãn(α) = arg min
a∈R1

n∑

i=1

̺α(rni − a),

where ̺α(z) = |z|{αI[z > 0] + (1 − α)I[z < 0]}, z ∈ R1. Using Lemma A.2 in [17],
we can show that

(4.10) n−1/2
n∑

i=1

ψα(rni − ãn(α)) → 0, i.e.,

n−1/2
n∑

i=1

(α− I[eni − (xi − x̄n)
⊤(β̃nR − β) < ãn(α)]) → 0

in probability as n → ∞, where ψα is the right-hand derivative of ̺α, i.e. ψα(z) =

α − I[z < 0], z ∈ R. Moreover, we have the Bahadur representation of the sample
α-quantile en:[nα] of en1, . . . , enn:

(4.11) n1/2[en:[nα] − F−1(α)]

= n−1/2[f(F−1(α))]−1
n∑

i=1

{α− I[eni < F−1(α)]}+ o(1) a.s. as n→ ∞.

Notice that
n∑

i=1

(xi − x̄n) = 0; similarly as in [10] we conclude that under n→ ∞

sup
‖b‖6C

{
n−1/2

∣∣∣∣
n∑

i=1

(I[eni − n−1/2(xi − x̄n)
⊤b < ãn(α)]− I[eni < ãn(α)])

∣∣∣∣
}

= op(1)

for every C, 0 < C < ∞. Inserting b 7→ n1/2(β̃nR − β) = Op(1), we obtain for
n→ ∞

n−1/2

∣∣∣∣
n∑

i=1

(I[eni − (xi − x̄n)
⊤(β̃nR − β) < ãn(α)]− I[eni < ãn(α)])

∣∣∣∣ = op(1).

Combining the above arguments, we conclude that n1/2(ãn(α))− en:[nα]) = op(1) as
n→ ∞, hence,

(4.12) n1/2[B̃n(α)− β0 − x̄⊤
nβ − en:[nα]] = op(1) as n→ ∞,

which gives (4.7). This combined with Theorem 2 in [8] implies the propositions of
Theorem 3.1. �
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5. Computation and numerical illustrations

The simulation study illustrates the behavior of the proposed estimates and de-
scribes their computation. For the computation of the averaged regression quantile
Bn(α), the R package quantreg [13] and its function rq(·) is used; it makes use of
a variant of the simplex algorithm.

Concerning the two-step averaged regression quantile B̃n(α), the most difficult
is the first step—the computation of the R-estimator β̃nR of the slopes. In the
numerical illustration below the score function ϕλ(u) = λ− I[u < λ] from (4.4) and
the approximate scores (i) from (4.1) are applied. In this case the function rfit(·)
from the R package Rfit ([11] version 0.23.0) could be directly used. For the rfit(·)
function the score function corresponding to (4.4) and (i) of (4.1) has to be defined,
i.e. at point ⌈λn⌉/(n+ 1) attaining the value ⌈λn⌉ − 1 − λ(n − 1) = An(i). The
function rfit(·) uses the minimization routine optim(. . ., method=“BFGS”), which is
a quasi-Newton optimizer. This method works well for the simple linear regression
model (p = 1) and fairly well if p ≪ n but is less precise in other cases. For
a numerical illustration we refer to Problem 4.9 in [9]. So, it is better to use the
fact that when employing the score function (4.4) with λ = α and the approximate
scores (i) from (4.1), the slope components of the regression α-quantile and the two-
step regression α-quantile coincide, β̂n(α) = β̃nR for every fixed α ∈ (0, 1), see [8].
Therefore, the rq(·) function from the quantreg package is then used to find the exact
solution β̃nR.

The averaged regression quantile Bn(α) and the two-step averaged regression
quantile B̃n(α) (and their inversions) can be used as the estimates of the quan-
tile function (and of the distribution function, respectively) of the model errors. The
behavior of the proposed estimates is illustrated in the following simulation study.

The regression model (2.1) is simulated with the following parameters: sample
size n = 25, β0 = 5, β = (β1, β2) = (−3, 2). The columns of the regression matrix
(x11, . . . , xn1)

⊤ and (x12, . . . , xn2)
⊤ are generated as two independent samples from

the uniform distributions U(0, 4) and U(−4, 2), respectively, and are standardized so

that
n∑

i=1

xij = 0, j = 1, 2. The errors eni are generated from the standard normal,

standard Cauchy or generalized extreme value (GEV) distribution with the shape
parameter k = −0.5. For each case, 10 000 replications of the model were simulated
and Bn(α) and B̃n(α) and their inversions were computed. For the two-step version
B̃n(α), the score-generating function (4.4) with fixed λ = 0.5 or 0.9 was used. For
a comparison, the empirical quantile function of the errors eni and its inversion were
calculated as well. Empirical quantile estimates based on Bn and on B̃n were then
calculated and plotted. The statistical software R was used for all the calculations.
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The figures showing estimates of the true quantile functions and of the true distribu-
tion functions look very similar, up to the inversion. Only the figures for the normal
and Cauchy distribution functions are presented, see Figures 1–2. Other figures can
be found at http://robust.tul.cz/figures.pdf.
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Figure 1. Empirical quantile estimates of the normal distribution function based on
(a) B̃ (λ = 0.5), (b) B̃ (λ = 0.9), (c) B, and (d) on the empirical quantile
function (EQF) of errors.

The approximation of the distribution functions appears to be very good. We
notice that in the case of the two-step regression quantile B̃n(α) with λ fixed, the
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Figure 2. Empirical quantile estimates of the Cauchy distribution function based on
(a) B̃ (λ = 0.5), (b) B̃ (λ = 0.9), (c) B, and (d) on the empirical quantile
function (EQF) of errors. (Vertical axis: values of the distribution f .)

quality of the estimate is sensitive to the choice of λ, especially for skewed or heavy-
tailed distributions. The choice around λ = 0.5 is generally recommended.

A c k n ow l e d g e m e n t. We thank the reviewer for careful reading of our man-
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