IT1.3 Lebesgue-Bochner spaces

Definition. Let f:Q — X be strongly u-measurable.

e Let p € [1,00). We say that the function f belongs to LP(u; X') (more precisely, to LP (2, 2, u; X))
provided the function w + || f(w)||” is integrable. For such a function we set

111, = ( [ nrer du)l/p.

e We say that f belongs to L>°(u; X) (more precisely, to L (2, X, u; X)) w +— || f(w)]| is essentially
bounded. For such a function we set

[flloc = esssup [ f(w)]]-
weN

Remarks:
(1) If p € [1,00), then simple integrable functions belong to LP(u; X). If f = Zle r;XE,; where
FEq,..., E, € ¥ are pairwise disjoint and z1,...,x; € X, then
1/p

k
£l = | D s 17 ()
Jj=1

(2) Simple measurable functions belong L>°(u; X). If f is of the above form, then
1flloe = max{l[z;];5 € {1,..., k} & u(Ej;) > 0}.
(3) If p € [1,00], h € LP(u) and = € X, then the function f : @ — X defined by the formula
f(w) = h(w) - = belongs tp LP(y; X) and one has || f[|, = [[A[l, - [lz[|. We denote f =h-z.

Theorem 14.

(a) Let p € [1,00]. After identifying the pairs of functions which are almost everywhere equal, the
space (LP(u; X), ||-]|,) is a Banach space.

(b) The space L*(u; X) is formed exactly by the (equivalence classes of) Bochner integrable functions.
(c) If X is a Hilbert space with the inner product {-,-), the space L?(u; X) is a Hilbert space as well,
the inner product is defined by

() = [ {F@)ae)) dn(e), fog € P ).
(d) If u is finite, then
L®(p; X) C L(p; X) € LP(p; X) € L (15 X).
whenever 1 < p < q < o.

Theorem 15. Let p € [1,00).

(a) Simple integrable functions form a dense subspace of LP(u; X).
(b) If both spaces LP(u) and X are separable, then LP(u; X) is separable as well.



Examples 16.

(1) Let G C R™ be a Lebesgue measurable set of strictly positive measure and let p € [1,00]. By
L?(G; X)) we denote the space LP(u; X), where u is the restriction of the n-dimensional Lebesgue
measure to G. If p € [1,00) and X is separable, then LP(G; X) is separable as well.

(2) Let p be the counting measure on N and let p € [1,00]. Then the space LP(u; X) is denoted by
(P(X) and can be represented as

(X)) = {(zn) € X5 ) [laa|” < 00} prop € [1,00),

n=1

0°(X) = {(zn) € X";sup ||z, || < o0}
neN

The respective norm is then defined by the formula

0o 1/p
[(@n)ll, = (Z Hﬂfn\lp> , (wn) € £P(X),p € [1,00),

[(@n)lloe = sup [[zall,  (25) € £7(X).
neN

If X is separable and p € [1,00), then ¢?(X) is separable as well.

Remarks on representations of dual spaces. Let p € [1,00) and let p* € (1,00] be the dual
exponent. Then:

(1) The dual to #’(X) is canonically isometric to 7 (X*). More precisely, if the sequence (p,)
belongs to " (X*), then the formula

(75) — Z(Pn(xn)a (zn) € £7(X)

defines a continuous linear functional whose norm equals [|(¢n)l|sp* (x~)- Further, any continuous
linear functional is of this form.

(2) Assume that X is reflexive and p is o-finite. Then the dual to LP(u; X) is canonically isometric
to LP" (u; X*). More precisely, if g € LP" (u; X), then the formula

fes / (@) (F@) dp,  f € LP(u: X)

defines a continuous linear functional whose norm equals ||g|| =, x-)- Further, any continuous
linear functional is of this form.

(3) A proof of (1) is not hard, it is similar to the proof of the representation of the dual to /2. A proof
of (2) is more complicated, it is necessary (among others) to use nontrivial special properties of
X. Assertion (2) holds for more general X, but not for every X. The exact formulation of the
conditions on X assuring validity of (2) for any o-finite measure is the following:

VY CC X separable: Y™ is separable.

This condition is equivalent to the Radon-Nikodym property of X*, i.e., to validity of the following
version of the Radon-Nikodym theorem:

Vm: ¥ — X* o-additive,m < p = 3f € L' (u, X*)VA € B:m(A) = (B)/ fdp.
A

(4) If X is reflexive and p € (1,00), then LP(u; X) is reflexive as well.



