
III.3 Lebesgue-Bohner spaes

De�nition. Let f : 
 → X be strongly µ-measurable.

• Let p ∈ [1,∞). We say that the funtion f belongs to Lp
(µ;X) (more preisely, to Lp

(
,�, µ;X))

provided the funtion ω 7→ ‖f(ω)‖
p
is integrable. For suh a funtion we set

‖f‖p =

(∫




‖f(ω)‖p dµ

)

1/p

.

• We say that f belongs to L∞
(µ;X) (more preisely, to L∞

(
,�, µ;X)) ω 7→ ‖f(ω)‖ is essentially
bounded. For suh a funtion we set

‖f‖
∞

= ess sup

ω∈


‖f(ω)‖ .

Remarks:

(1) If p ∈ [1,∞), then simple integrable funtions belong to Lp
(µ;X). If f =

∑k
j=1

xjχEj
where

E
1

, . . . , Ek ∈ � are pairwise disjoint and x
1

, . . . , xk ∈ X, then

‖f‖p =





k
∑

j=1

‖xj‖
p
µ(Ej)





1/p

.

(2) Simple measurable funtions belong L∞
(µ;X). If f is of the above form, then

‖f‖
∞

= max{‖xj‖ ; j ∈ {1, . . . , k} & µ(Ej) > 0}.

(3) If p ∈ [1,∞℄, h ∈ Lp
(µ) and x ∈ X, then the funtion f : 
 → X de�ned by the formula

f(ω) = h(ω) · x belongs tp Lp
(µ;X) and one has ‖f‖p = ‖h‖p · ‖x‖. We denote f = h · x.

Theorem 14.

(a) Let p ∈ [1,∞℄. After identifying the pairs of funtions whih are almost everywhere equal, the

spae (Lp
(µ;X), ‖·‖p) is a Banah spae.

(b) The spae L1

(µ;X) is formed exatly by the (equivalene lasses of) Bohner integrable funtions.

() If X is a Hilbert spae with the inner produt 〈·, ·〉, the spae L2

(µ;X) is a Hilbert spae as well,

the inner produt is de�ned by

〈f, g〉 =

∫




〈f(ω), g(ω)〉 dµ(ω), f, g ∈ L2

(µ;X).

(d) If µ is �nite, then

L∞
(µ;X) ⊂ Lq

(µ;X) ⊂ Lp
(µ;X) ⊂ L1

(µ;X).

whenever 1 ≤ p < q ≤ ∞.

Theorem 15. Let p ∈ [1,∞).

(a) Simple integrable funtions form a dense subspae of Lp
(µ;X).

(b) If both spaes Lp
(µ) and X are separable, then Lp

(µ;X) is separable as well.



Examples 16.

(1) Let G ⊂ R
n
be a Lebesgue measurable set of stritly positive measure and let p ∈ [1,∞℄. By

Lp
(G;X) we denote the spae Lp

(µ;X), where µ is the restrition of the n-dimensional Lebesgue

measure to G. If p ∈ [1,∞) and X is separable, then Lp
(G;X) is separable as well.

(2) Let µ be the ounting measure on N and let p ∈ [1,∞℄. Then the spae Lp
(µ;X) is denoted by

ℓp(X) and an be represented as

ℓp(X) = {(xn) ∈ XN
;

∞
∑

n=1

‖xn‖
p
< ∞} pro p ∈ [1,∞),

ℓ∞(X) = {(xn) ∈ XN
; sup

n∈N

‖xn‖ < ∞}.

The respetive norm is then de�ned by the formula

‖(xn)‖p =

(

∞
∑

n=1

‖xn‖
p

)

1/p

, (xn) ∈ ℓp(X), p ∈ [1,∞),

‖(xn)‖∞ = sup

n∈N

‖xn‖ , (xn) ∈ ℓ∞(X).

If X is separable and p ∈ [1,∞), then ℓp(X) is separable as well.

Remarks on representations of dual spaes. Let p ∈ [1,∞) and let p∗ ∈ (1,∞℄ be the dual

exponent. Then:

(1) The dual to ℓp(X) is anonially isometri to ℓp
∗

(X∗
). More preisely, if the sequene (ϕn)

belongs to ℓp
∗

(X∗
), then the formula

(xn) 7→
∑

n

ϕn(xn), (xn) ∈ ℓp(X)

de�nes a ontinuous linear funtional whose norm equals ‖(ϕn)‖ℓp∗(X∗
)

. Further, any ontinuous

linear funtional is of this form.

(2) Assume that X is reexive and µ is σ-�nite. Then the dual to Lp
(µ;X) is anonially isometri

to Lp∗

(µ;X∗
). More preisely, if g ∈ Lp∗

(µ;X), then the formula

f 7→

∫

g(ω)(f(ω)) dµ, f ∈ Lp
(µ;X)

de�nes a ontinuous linear funtional whose norm equals ‖g‖Lp∗
(µ;X∗

)

. Further, any ontinuous

linear funtional is of this form.

(3) A proof of (1) is not hard, it is similar to the proof of the representation of the dual to ℓp. A proof

of (2) is more ompliated, it is neessary (among others) to use nontrivial speial properties of

X. Assertion (2) holds for more general X, but not for every X. The exat formulation of the

onditions on X assuring validity of (2) for any σ-�nite measure is the following:

∀Y ⊂⊂ X separable:Y ∗
is separable.

This ondition is equivalent to the Radon-Nikodým property of X∗
, i.e., to validity of the following

version of the Radon-Nikodým theorem:

∀m : � → X∗ σ-additive,m ≪ µ ⇒ ∃f ∈ L1

(µ,X∗
)∀A ∈ �:m(A) = (B)

∫

A

f dµ.

(4) If X is reexive and p ∈ (1,∞), then Lp
(µ;X) is reexive as well.


