
III.3 Lebesgue-Bo
hner spa
es

De�nition. Let f : 
 → X be strongly µ-measurable.

• Let p ∈ [1,∞). We say that the fun
tion f belongs to Lp
(µ;X) (more pre
isely, to Lp

(
,�, µ;X))

provided the fun
tion ω 7→ ‖f(ω)‖
p
is integrable. For su
h a fun
tion we set

‖f‖p =

(∫




‖f(ω)‖p dµ

)

1/p

.

• We say that f belongs to L∞
(µ;X) (more pre
isely, to L∞

(
,�, µ;X)) ω 7→ ‖f(ω)‖ is essentially
bounded. For su
h a fun
tion we set

‖f‖
∞

= ess sup

ω∈


‖f(ω)‖ .

Remarks:

(1) If p ∈ [1,∞), then simple integrable fun
tions belong to Lp
(µ;X). If f =

∑k
j=1

xjχEj
where

E
1

, . . . , Ek ∈ � are pairwise disjoint and x
1

, . . . , xk ∈ X, then

‖f‖p =





k
∑

j=1

‖xj‖
p
µ(Ej)





1/p

.

(2) Simple measurable fun
tions belong L∞
(µ;X). If f is of the above form, then

‖f‖
∞

= max{‖xj‖ ; j ∈ {1, . . . , k} & µ(Ej) > 0}.

(3) If p ∈ [1,∞℄, h ∈ Lp
(µ) and x ∈ X, then the fun
tion f : 
 → X de�ned by the formula

f(ω) = h(ω) · x belongs tp Lp
(µ;X) and one has ‖f‖p = ‖h‖p · ‖x‖. We denote f = h · x.

Theorem 14.

(a) Let p ∈ [1,∞℄. After identifying the pairs of fun
tions whi
h are almost everywhere equal, the

spa
e (Lp
(µ;X), ‖·‖p) is a Bana
h spa
e.

(b) The spa
e L1

(µ;X) is formed exa
tly by the (equivalen
e 
lasses of) Bo
hner integrable fun
tions.

(
) If X is a Hilbert spa
e with the inner produ
t 〈·, ·〉, the spa
e L2

(µ;X) is a Hilbert spa
e as well,

the inner produ
t is de�ned by

〈f, g〉 =

∫




〈f(ω), g(ω)〉 dµ(ω), f, g ∈ L2

(µ;X).

(d) If µ is �nite, then

L∞
(µ;X) ⊂ Lq

(µ;X) ⊂ Lp
(µ;X) ⊂ L1

(µ;X).

whenever 1 ≤ p < q ≤ ∞.

Theorem 15. Let p ∈ [1,∞).

(a) Simple integrable fun
tions form a dense subspa
e of Lp
(µ;X).

(b) If both spa
es Lp
(µ) and X are separable, then Lp

(µ;X) is separable as well.



Examples 16.

(1) Let G ⊂ R
n
be a Lebesgue measurable set of stri
tly positive measure and let p ∈ [1,∞℄. By

Lp
(G;X) we denote the spa
e Lp

(µ;X), where µ is the restri
tion of the n-dimensional Lebesgue

measure to G. If p ∈ [1,∞) and X is separable, then Lp
(G;X) is separable as well.

(2) Let µ be the 
ounting measure on N and let p ∈ [1,∞℄. Then the spa
e Lp
(µ;X) is denoted by

ℓp(X) and 
an be represented as

ℓp(X) = {(xn) ∈ XN
;

∞
∑

n=1

‖xn‖
p
< ∞} pro p ∈ [1,∞),

ℓ∞(X) = {(xn) ∈ XN
; sup

n∈N

‖xn‖ < ∞}.

The respe
tive norm is then de�ned by the formula

‖(xn)‖p =

(

∞
∑

n=1

‖xn‖
p

)

1/p

, (xn) ∈ ℓp(X), p ∈ [1,∞),

‖(xn)‖∞ = sup

n∈N

‖xn‖ , (xn) ∈ ℓ∞(X).

If X is separable and p ∈ [1,∞), then ℓp(X) is separable as well.

Remarks on representations of dual spa
es. Let p ∈ [1,∞) and let p∗ ∈ (1,∞℄ be the dual

exponent. Then:

(1) The dual to ℓp(X) is 
anoni
ally isometri
 to ℓp
∗

(X∗
). More pre
isely, if the sequen
e (ϕn)

belongs to ℓp
∗

(X∗
), then the formula

(xn) 7→
∑

n

ϕn(xn), (xn) ∈ ℓp(X)

de�nes a 
ontinuous linear fun
tional whose norm equals ‖(ϕn)‖ℓp∗(X∗
)

. Further, any 
ontinuous

linear fun
tional is of this form.

(2) Assume that X is re
exive and µ is σ-�nite. Then the dual to Lp
(µ;X) is 
anoni
ally isometri


to Lp∗

(µ;X∗
). More pre
isely, if g ∈ Lp∗

(µ;X), then the formula

f 7→

∫

g(ω)(f(ω)) dµ, f ∈ Lp
(µ;X)

de�nes a 
ontinuous linear fun
tional whose norm equals ‖g‖Lp∗
(µ;X∗

)

. Further, any 
ontinuous

linear fun
tional is of this form.

(3) A proof of (1) is not hard, it is similar to the proof of the representation of the dual to ℓp. A proof

of (2) is more 
ompli
ated, it is ne
essary (among others) to use nontrivial spe
ial properties of

X. Assertion (2) holds for more general X, but not for every X. The exa
t formulation of the


onditions on X assuring validity of (2) for any σ-�nite measure is the following:

∀Y ⊂⊂ X separable:Y ∗
is separable.

This 
ondition is equivalent to the Radon-Nikodým property of X∗
, i.e., to validity of the following

version of the Radon-Nikodým theorem:

∀m : � → X∗ σ-additive,m ≪ µ ⇒ ∃f ∈ L1

(µ,X∗
)∀A ∈ �:m(A) = (B)

∫

A

f dµ.

(4) If X is re
exive and p ∈ (1,∞), then Lp
(µ;X) is re
exive as well.


