IV. Banach algebras and Gelfand transform

Convention: In this chapter all the Banach spaces are considered over the complex field (unless the converse is explicitly stated).

Remark: The real version of the theory of this chapter is studied as well, but it is quite different.

IV.1 Banach algebras – basic notions and properties

Definition.

- An algebra is a (complex) vector space A, equipped moreover with the operation of multiplication \cdot which enjoys the following properties:
 - $\circ x \cdot (y \cdot z) = (x \cdot y) \cdot z \text{ for } x, y, z \in A;$
 - $x \cdot (y+z) = x \cdot y + x \cdot z$ for $x, y, z \in A$;
 - $\circ \ (x+y) \cdot z = x \cdot z + y \cdot z \text{ for } x, y, z \in A;$
 - $\circ \alpha \cdot (x \cdot y) = (\alpha \cdot x) \cdot y = x \cdot (\alpha \cdot y)$ for $\alpha \in \mathbb{C}$ and $x, y \in A$.
- An algebra A is said to be commutative, if the multiplication is commutative, i.e., if
 x ⋅ y = y ⋅ x for x, y ∈ A.
- Let A be an algebra. An element $e \in A$ is said to be
 - \circ a left unit if $e \cdot x = x$ for $x \in A$;
 - a right unit if $x \cdot e = x$ for $x \in A$;
 - \circ a unit if $e \cdot x = x \cdot e = x$ for $x \in A$.
 - An algebra admitting a unit is called **unital**.
- Let A be an algebra equipped moreover with a norm $\|\cdot\|$ satisfying

 $\circ ||x \cdot y|| \le ||x|| \cdot ||y|| \text{ for } x, y \in A.$

- Then A is said to be a normed algebra.
- A **Banach algebra** is a normed algebra A, which is complete in the metric generated by the norm.

Remarks:

- (1) An algebra may have many left units or many right units.
- (2) If an algebra has both a left unit and a right unit, they are equal. In particular, any algebra has at most one unit.
- (3) If A is a nontrivial normed algebra with a unit e (nontrivial means $A \neq \{o\}$), then $||e|| \ge 1$.

Examples 1 (examples of Banach algebras).

- (1) The complex field is a unital commutative Banach algebra.
- (2) Let K be a compact Hausdorff space. Then $\mathcal{C}(K)$, the space of all the complex-valued continuous functions on K equipped with the supremum norm and with the pointwise multiplication (i.e., $(f \cdot g)(x) = f(x) \cdot g(x)$ for $f, g \in \mathcal{C}(K)$ and $x \in K$) is a unital commutative Banach algebra. Its unit is the constant function equal to 1.
- (3) Let T be a locally compact Hausdorff space which is not compact (e.g., $T = \mathbb{R}^n$). Let the space
- $\mathcal{C}_0(T) = \{f: T \to \mathbb{C} \text{ continuous}; \forall \varepsilon > 0 : \{x \in T; |f(x)| \ge \varepsilon\} \text{ is a compact subset of } T\}$ be equipped with the supremum norm and with the pointwise multiplication. Then $\mathcal{C}_0(T)$ is a commutative Banach algebra which has no unit.
- (4) For $n \in \mathbb{N}$ let M_n be the space of all the complex square matrices of order n, equipped with the matrix norm and with the matrix multiplication. Then M_n is a unital Banach algebra. Its unit is the unit matrix. If $n \geq 2$, M_n is not commutative.

- (5) Let X be a Banach space and let L(X) be the space of all the bounded linear operators on X equipped with the operator norm. If we define the multiplication on L(X) as the composition of operators (i.e., $S \cdot T = S \circ T$ for $S, T \in L(X)$), then L(X) is a unital Banach algebra. Its unit is the identity mapping. If dim $X \ge 2$, the algebra L(X) is not commutative.
- (6) Let X be a Banach space and let K(X) be the space of all the compact operators on X. Then K(X) is a closed subalgebra of L(X), hence it is a Banach algebra. The algebra K(X) is unital if and only if X is finite-dimensional. K(X) is commutative if and only if dim X = 1.
- (7) The Banach space $L^1(\mathbb{R}^n)$ becomes a commutative Banach algebra, if we define the multiplication as the convolution. This algebra has no unit.
- (8) The Banach space $\ell^1(\mathbb{Z})$, equipped with the multiplication * (called also convolution) defined by

$$(x_n)_{n\in\mathbb{Z}}*(y_n)_{n\in\mathbb{Z}}=\left(\sum_{k\in\mathbb{Z}}x_ky_{n-k}\right)_{n\in\mathbb{Z}},\quad (x_n)_{n\in\mathbb{Z}},(y_n)_{n\in\mathbb{Z}}\in\ell^1(\mathbb{Z}),$$

is a unital commutative Banach algebra. It unit is the canonical vector e_0 .

(9) Let μ be a normalized Lebesgue measure on $[0, 2\pi)$ (i.e., $\mu = \frac{1}{2\pi}\lambda$, where λ is a Lebesgue measure on $[0, 2\pi)$). Then the Banach space $L^1(\mu)$, equipped with the multiplication * (called also convolution) defined by

$$\begin{aligned} f * g(x) &= \int_{[0,2\pi)} f(y)g((x-y) \mod 2\pi) \,\mathrm{d}\mu(y) \\ &= \frac{1}{2\pi} \int_{[0,2\pi)} f(y)g((x-y) \mod 2\pi) \,\mathrm{d}y, \quad f,g \in L^1(\mu), x \in [0,2\pi), \end{aligned}$$

is a commutative Banach algebra. This algebra has no unit.

Proposition 2 (adding a unit).

(a) Let A be an algebra. Let A^+ denote the vector space $A \times \mathbb{C}$ equipped with the multiplication defined by

$$(x,\lambda) \cdot (y,\mu) = (x \cdot y + \lambda y + \mu x, \lambda \mu), \quad (x,\lambda), (y,\mu) \in A^+.$$

Then A^+ is an algebra and the element (o, 1) is its unit. Moreover, $\{(a, 0); a \in A\}$ is a subalgebra of A^+ , which is isomorphic to the algebra A.

(b) If A is a Banach algebra, then A^+ is a unital Banach algebra, if we define the norm by $\|(x,\lambda)\| = \|x\| + |\lambda|, (x,\lambda) \in A^+$. Moreover, $\{(a,0); a \in A\}$ is then a closed subalgebra of A^+ , which is isometrically isomorphic to the Banach algebra A.

Remarks:

- (1) The algebraic structure of the algebra A^+ is uniquely determined, for the norm on A^+ it is not the case. The given norm is one of the possible ones, later we will see other possibilities, which are natural in some special cases.
- (2) The procedure of adding a unit is important mainly in case A is not unital. However, it has a sense also in case A is unital. If A has a unit e, the unit of A^+ is (o, 1) and the element (e, 0) is not a unit anymore. This element is the unit of the subalgebra $\{(a, 0), a \in A\}$.

Proposition 3 (renorming of a Banach algebra). Let $(A, \|\cdot\|)$ be a nontrivial Banach algebra with a unit e. Then there exists an equivalent norm $||| \cdot |||$ on A such that $(A, ||| \cdot |||)$ is also a Banach algebra and, moreover, |||e||| = 1.

Convention: By a **unital Banach algebra** we will mean in the sequel a nontrivial Banach algebra, which has a unit and the unit has norm one.

Proposition 4. Let A be a Banach algebra. Then:

- (a) $x \cdot \boldsymbol{o} = \boldsymbol{o} \cdot x = \boldsymbol{o}$ for $x \in A$.
- (b) The multiplication is continuous as a mapping of $A \times A$ to A.

Definition. Let A be a Banach algebra with a unit e.

• The element $y \in A$ is said to be an inverse element (or just an inverse) of an element $x \in A$ if

$$x \cdot y = y \cdot x = e.$$

- An element $x \in A$ is called **invertible** if it admits an inverse.
- The set of all the invertible elements of A is denoted by G(A).

Remark. Let A be a Banach algebra with a unit e and let $x \in A$. If $y \in A$ satisfies $x \cdot y = e$, it is called a **right inverse** of x; if it satisfies $y \cdot x = e$, it is called a **left inverse**. An element x can have many different right inverses, or many different left inverses. However, if x has both a right inverse and a left inverse, it is invertible. Its inverse is uniquely determined and it is simultaneously the unique right inverse and the unique left inverse. The inverse of x is denoted by x^{-1} .

Proposition 5 (on multiplication of invertible elements). Let A be a unital Banach algebra.

- (a) Let $x, y \in G(A)$. Then $x \cdot y \in G(A)$ and $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$.
- (b) G(A) equipped with the operation of multiplication is a group.
- (c) If the elements $x_1, \ldots, x_n \in A$ commute (i.e., $x_j \cdot x_k = x_k \cdot x_j$ for $j, k \in \{1, \ldots, n\}$), then $x_1 \cdots x_n \in G(A)$ if and only if $\{x_1, \ldots, x_n\} \subset G(A)$.

Lemma 6 (Neumann's series). Let A be a Banach algebra with a unit e.

(a) Let $x \in A$ such that ||x|| < 1. Then $e - x \in G(A)$ and, moreover,

$$(e-x)^{-1} = \sum_{n=0}^{\infty} x^n,$$

where the series converges absolutely.

(b) If $x \in G(A)$, $h \in A$ and $||h|| < \frac{1}{||x^{-1}||}$, then $x + h \in G(A)$ and, moreover,

$$(x+h)^{-1} = x^{-1} \cdot \sum_{n=0}^{\infty} (-1)^n (h \cdot x^{-1})^n \quad \text{and} \quad \|(x+h)^{-1} - x^{-1}\| \le \frac{\|x^{-1}\|^2 \|h\|}{1 - \|x^{-1}\| \|h\|}.$$

Theorem 7 (topological properties of the group of invertible elements). Let A be a unital Banach algebra. Then

- (1) G(A) is an open subset of A,
- (2) the mapping $x \mapsto x^{-1}$ is a homeomorphism of G(A) onto G(A),
- (3) if (x_n) is a sequence in G(A) which converges in A to some $x \notin G(A)$, then $||x_n^{-1}|| \to \infty$.