
IV. Banah algebras and Gelfand transform

Convention: In this hapter all the Banah spaes are onsidered over the omplex �eld (unless

the onverse is expliitly stated).

Remark: The real version of the theory of this hapter is studied as well, but it is quite

di�erent.

IV.1 Banah algebras { basi notions and properties

De�nition.

• An algebra is a (omplex) vetor spae A, equipped moreover with the operation of

multipliation · whih enjoys the following properties:

◦ x · (y · z) = (x · y) · z for x, y, z ∈ A;

◦ x · (y + z) = x · y + x · z for x, y, z ∈ A;

◦ (x+ y) · z = x · z + y · z for x, y, z ∈ A;

◦ α · (x · y) = (α · x) · y = x · (α · y) for α ∈ C and x, y ∈ A.

• An algebra A is said to be ommutative, if the multipliation is ommutative, i.e., if

◦ x · y = y · x for x, y ∈ A.

• Let A be an algebra. An element e ∈ A is said to be

◦ a left unit if e · x = x for x ∈ A;

◦ a right unit if x · e = x for x ∈ A;

◦ a unit if e · x = x · e = x for x ∈ A.

An algebra admitting a unit is alled unital.

• Let A be an algebra equipped moreover with a norm ‖·‖ satisfying

◦ ‖x · y‖ ≤ ‖x‖ · ‖y‖ for x, y ∈ A.

Then A is said to be a normed algebra.

• A Banah algebra is a normed algebra A, whih is omplete in the metri generated by

the norm.

Remarks:

(1) An algebra may have many left units or many right units.

(2) If an algebra has both a left unit and a right unit, they are equal. In partiular, any

algebra has at most one unit.

(3) If A is a nontrivial normed algebra with a unit e (nontrivial means A 6= {o}), then
‖e‖ ≥ 1.

Examples 1 (examples of Banah algebras).

(1) The omplex �eld is a unital ommutative Banah algebra.

(2) Let K be a ompat Hausdor� spae. Then C(K), the spae of all the omplex-valued

ontinuous funtions on K equipped with the supremum norm and with the pointwise

multipliation (i.e., (f · g)(x) = f(x) · g(x) for f, g ∈ C(K) and x ∈ K) is a unital

ommutative Banah algebra. Its unit is the onstant funtion equal to 1.

(3) Let T be a loally ompat Hausdor� spae whih is not ompat (e.g., T = Rn
). Let

the spae

C
0

(T ) = {f : T → C ontinuous; ∀ε > 0 : {x ∈ T ; |f(x)| ≥ ε} is a ompat subset of T}
be equipped with the supremum norm and with the pointwise multipliation. Then

C
0

(T ) is a ommutative Banah algebra whih has no unit.

(4) For n ∈ N let Mn be the spae of all the omplex square matries of order n, equipped
with the matrix norm and with the matrix multipliation. Then Mn is a unital Banah

algebra. Its unit is the unit matrix. If n ≥ 2, Mn is not ommutative.



(5) Let X be a Banah spae and let L(X) be the spae of all the bounded linear operators

on X equipped with the operator norm. If we de�ne the multipliation on L(X) as the

omposition of operators (i.e., S · T = S ◦ T for S, T ∈ L(X)), then L(X) is a unital

Banah algebra. Its unit is the identity mapping. If dimX ≥ 2, the algebra L(X) is not

ommutative.

(6) Let X be a Banah spae and let K(X) be the spae of all the ompat operators on X .

Then K(X) is a losed subalgebra of L(X), hene it is a Banah algebra. The algebra

K(X) is unital if and only if X is �nite-dimensional. K(X) is ommutative if and only

if dimX = 1.

(7) The Banah spae L1

(R
n
) beomes a ommutative Banah algebra, if we de�ne the

multipliation as the onvolution. This algebra has no unit.

(8) The Banah spae ℓ1(Z), equipped with the multipliation ∗ (alled also onvolution)

de�ned by

(xn)n∈Z ∗ (yn)n∈Z =

(

∑

k∈Z

xkyn−k

)

n∈Z

, (xn)n∈Z, (yn)n∈Z ∈ ℓ1(Z),

is a unital ommutative Banah algebra. It unit is the anonial vetor e
0

.

(9) Let µ be a normalized Lebesgue measure on [0, 2π) (i.e., µ =

1

2π
λ, where λ is a Lebesgue

measure on [0, 2π)). Then the Banah spae L1

(µ), equipped with the multipliation ∗
(alled also onvolution) de�ned by

f ∗ g(x) =

∫

[0,2π)

f(y)g((x− y) mod 2π) dµ(y)

=

1

2π

∫

[0,2π)

f(y)g((x− y) mod 2π) dy, f, g ∈ L1

(µ), x ∈ [0, 2π),

is a ommutative Banah algebra. This algebra has no unit.

Proposition 2 (adding a unit).

(a) Let A be an algebra. Let A+

denote the vetor spae A × C equipped with the multi-

pliation de�ned by

(x, λ) · (y, µ) = (x · y + λy + µx, λµ), (x, λ), (y, µ) ∈ A+.

Then A+

is an algebra and the element (o, 1) is its unit. Moreover, {(a, 0); a ∈ A} is a

subalgebra of A+

, whih is isomorphi to the algebra A.
(b) If A is a Banah algebra, then A+

is a unital Banah algebra, if we de�ne the norm by

‖(x, λ)‖ = ‖x‖+ |λ|, (x, λ) ∈ A+

. Moreover, {(a, 0); a ∈ A} is then a losed subalgebra

of A+

, whih is isometrially isomorphi to the Banah algebra A.

Remarks:

(1) The algebrai struture of the algebra A+

is uniquely determined, for the norm on A+

it is not the ase. The given norm is one of the possible ones, later we will see other

possibilities, whih are natural in some speial ases.

(2) The proedure of adding a unit is important mainly in ase A is not unital. However,

it has a sense also in ase A is unital. If A has a unit e, the unit of A+

is (o, 1) and

the element (e, 0) is not a unit anymore. This element is the unit of the subalgebra

{(a, 0), a ∈ A}.



Proposition 3 (renorming of a Banah algebra). Let (A, ‖·‖) be a nontrivial Banah algebra

with a unit e. Then there exists an equivalent norm ||| · ||| on A suh that (A, ||| · |||) is also a

Banah algebra and, moreover, |||e||| = 1.

Convention: By a unital Banah algebra we will mean in the sequel a nontrivial Banah algebra,

whih has a unit and the unit has norm one.

Proposition 4. Let A be a Banah algebra. Then:

(a) x · o = o · x = o for x ∈ A.
(b) The multipliation is ontinuous as a mapping of A×A to A.

De�nition. Let A be a Banah algebra with a unit e.

• The element y ∈ A is said to be an inverse element (or just an inverse) of an element x ∈ A
if

x · y = y · x = e.

• An element x ∈ A is alled invertible if it admits an inverse.

• The set of all the invertible elements of A is denoted by G(A).

Remark. Let A be a Banah algebra with a unit e and let x ∈ A. If y ∈ A satis�es x · y = e,
it is alled a right inverse of x; if it satis�es y · x = e, it is alled a left inverse. An element x
an have many di�erent right inverses, or many di�erent left inverses. However, if x has both

a right inverse and a left inverse, it is invertible. Its inverse is uniquely determined and it is

simultaneuously the unique right inverse and the unique left inverse. The inverse of x is denoted

by x−1

.

Proposition 5 (on multipliation of invertible elements). Let A be a unital Banah algebra.

(a) Let x, y ∈ G(A). Then x · y ∈ G(A) and (x · y)−1

= y−1 · x−1

.

(b) G(A) equipped with the operation of multipliation is a group.

() If the elements x
1

, . . . , xn ∈ A ommute (i.e., xj ·xk = xk ·xj for j, k ∈ {1, . . . , n}), then
x
1

· · ·xn ∈ G(A) if and only if {x
1

, . . . , xn} ⊂ G(A).

Lemma 6 (Neumann's series). Let A be a Banah algebra with a unit e.

(a) Let x ∈ A suh that ‖x‖ < 1. Then e− x ∈ G(A) and, moreover,

(e− x)−1

=

∞
∑

n=0

xn,

where the series onverges absolutely.

(b) If x ∈ G(A), h ∈ A and ‖h‖ < 1

‖x−1‖
, then x+ h ∈ G(A) and, moreover,

(x+ h)−1

= x−1 ·

∞
∑

n=0

(−1)

n
(h · x−1

)

n
and ‖(x+ h)−1 − x−1‖ ≤

‖x−1‖2‖h‖

1− ‖x−1‖‖h‖
.

Theorem 7 (topologial properties of the group of invertible elements). Let A be a unital

Banah algebra. Then

(1) G(A) is an open subset of A,
(2) the mapping x 7→ x−1

is a homeomorphism of G(A) onto G(A),

(3) if (xn) is a sequene in G(A) whih onverges in A to some x /∈ G(A), then ‖x−1

n ‖ → ∞.


