
IV.4 Ideals, omplex homomorphisms and Gelfand transform

De�nition. Let A be a Banah algebra. An ideal in A is a proper vetor subspae I ⊂ A suh that

xy ∈ I and yx ∈ I whenever x ∈ I and y ∈ A. A maximal ideal in the algebra A is an ideal, whih is

maximal with respet to inlusion.

Remarks:

(1) Any ideal is a proper subalgebra. A proper subalgebra need not be an ideal.

(2) Also left ideals (de�ned by the impliation x ∈ I, y ∈ A ⇒ yx ∈ I) and right ideals (de�ned

similarly) are studied. Then an ideal is a subspae whih is both a left ideal and a right ideal.

We will not investigate unilateral ideals.

Proposition 18 (properties of ideals and of maximal ideals). Let A be a unital Banah algebra.

(a) If I is an ideal in A, then I ∩G(A) = ∅.
(b) The losure of an ideal in A is again an ideal in A.
() Any ideal I in A is ontained in a maximal ideal J .
(d) Any maximal ideal in A is losed.

Examples 19.

(1) If X is an in�nite-dimensional Banah spae, then K(X) is a losed ideal in the Banah algebra

L(X).

(2) The only ideal in the matrix algebra Mn (where n ∈ N) is the zero ideal.

(3) Let K be a ompat Hausdor� spae. Then all the losed ideals in the Banah algebra C(K) are

the subspaes of the form

{f ∈ C(K); f |F = 0}, where F ⊂ K is a nonempty losed subset.

Proposition 20 (fatorization of an algebra). Let A be a Banah algebra and let I be a losed ideal

in A. Then the quotient Banah spae A/I is a Banah algebra if the multipliation is de�ned by

q(x)q(y) = q(xy), where q is the quotient mapping of A onto A/I. Moreover, if A is ommutative or

unital, the same holds for A/I.

De�nition.

• Let A,B be Banah algebras. A mapping h : A → B is said to be a homomorphism of Banah

algebras (shortly, a homomorphism), if it is linear and, moreover, h(xy) = h(x)h(y) for x, y ∈ A.
• A omplex homomorphism on a Banah algebra A is a homomorphism h : A → C.

• By �(A) we will denote the set of all the nonzero omplex homomorphisms on A.

Remarks:

(1) In the de�nition of a homomorphism of Banah algebras there is no ontinuity requirement. In

some important ases a homomorphism is automatially ontinuous (see, e.g., Proposition 21 or

Proposition 31).

(2) If h : A → B is a homomorpism of Banah algebras, whih is not identially zero, its kernel is an

ideal in the algebra A.
(3) By the preeeding remark and Example 19(2) we see that for n ≥ 2 one has �(Mn) = ∅.
(4) The quotient mapping from Proposition 20 is a homomorphism of Banah algebras.



Proposition 21 (properties of omplex homomorphisms). LetA be a Banah algebra and let h ∈ �(A).

• If A has a unit e, then:
(a) h(e) = 1 and ‖h‖ = 1;

(b) ker h is a maximal ideal in A;
() h(x) 6= 0 for x ∈ G(A).

• For a general Banah algebra A (unital or not) the following hold:

(d) There exists a unique

~h ∈ �(A+) extending h (i.e., suh that

~h(x, 0) = h(x) for x ∈ A);
(e) ‖h‖ ≤ 1;

(f) h(x) ∈ σ(x) for x ∈ A.

Proposition 22 (properties of �(A)). Let A be a Banah algebra.

(a) If A is unital, then �(A) is a weak* ompat subset of the unit sphere SA∗
.

(b) �(A+) = {~h;h ∈ �(A)} ∪ {h∞}, where ~h is the extension of h provided by Proposition 21(d)

and h∞(x, λ) = λ for (x, λ) ∈ A+.
() If A has no unit, then �(A) is a subset of the unit ball BA∗

and �(A) ∪ {o} is weak* ompat.

Therefore, �(A) is loally ompat in the weak* topology.

Proposition 23 (omplex homomorphisms and maximal ideals). Let A be a unital Banah algebra.

(1) If I is an ideal in A of odimension one, there exists a unique h ∈ �(A) suh that I = kerh.
(2) If A is ommutative, then h 7→ kerh is a bijetion of �(A) onto the set of all the maximal ideals

in A.

De�nition. Let A be ommutative Banah algebra.

• Let x ∈ A. For h ∈ �(A) we set x̂(h) = h(x). The funtion x̂ : �(A) → C is then alled the

Gelfand transform of x. It easily follows from de�nitions that x̂ is a ontinuous omplex funtion

on �(A), moreover by Proposition 22() we see that x̂ ∈ C
0

(�(A)).
• The Gelfand transform of the algebra A is the mapping � : A → C

0

(�(A)) de�ned by �(x) = x̂,
x ∈ A.

Theorem 24 (properties of the Gelfand transform). Let A be a ommutative Banah algebra and

let � : A → C
0

(�(A)) be its Gelfand transform. Further, let �

+

: A+ → C(�(A+)) be the Gelfand

transform of the algebra A+. To desribe �(A+) we use Proposition 22(b) (inluding the notation).

(a) � is a homomorphism of the algebra A into the algebra C
0

(�(A)).
(b) For (x, λ) ∈ A+ one has

�

+

(x, λ)(~h) = �(x)(h) + λ for h ∈ �(A),

�

+

(x, λ)(h∞) = λ.

() If A is unital, then

ker � = rad(A) :=
⋂

{I : I is a maximal ideal in A}.

Hene, � is one-to-one (and so it is an isomorphism of the algebras A and �(A) = ^A) if and only

if rad(A) = {0} (i.e., if and only if A is semisimple).

(d) � is one-to-one if and only if �

+

is one-to-one.

(e) If A is unital, then for eah x ∈ A one has x̂(�(A)) = σ(x).
(f) If A has no unit, then for eah x ∈ A one has σ(x) = x̂(�(A)) ∪ {0}.
(g) ‖x̂‖ = r(x) for eah x ∈ A.
(h) � is a ontinuous homomorphism, one has ‖�‖ ≤ 1.

(i) � is a topologial isomorphism of the algebras A and �(A) if and only if it is one-to-one (see

(,d)) and

^A = �(A) is losed.
(j) �(A) separates points of �(A).


