IV.5 C*-algebras – basic properties

Definition. Let A be a Banach algebra.

• An involution on A is a mapping $x \mapsto x^*$ of A into itself such that for each $x, y \in A$ and $\lambda \in \mathbb{C}$ one has

 $(x+y)^* = x^* + y^*,$ $(\lambda x)^* = \overline{\lambda} x^*,$ $(xy)^* = y^* x^*$ and $x^{**} = x.$

• A Banach algebra A with involution is called a C^* -algebra if for each $x \in A$ one has

$$||x^*x|| = ||x||^2.$$

• If A is a Banach algebra with involution and $x \in A$, the element x is called selfadjoint (or hermitien) if $x^* = x$; x is called normal if $x^*x = xx^*$.

Remarks.

- (1) Let A be a Banach algebra with involution. Then $e \in A$ is a left unit if and only if e^* is a right unit. Hence, if A has either a left unit or a right unit, it is unital and the unit is selfadjoint.
- (2) If A is a Banach algebra with involution such that

$$||x^*x|| \ge ||x||^2 \text{ for } x \in A,$$

then A is a C^* -algebra.

(3) Let A be a C^{*}-algebra. Then $x \mapsto x^*$ is a conjugate linear isometry of A onto A. Hence,

$$||x^*x|| = ||xx^*|| = ||x||^2 = ||x^*||^2$$
 for $x \in A$.

Examples 25.

- (1) The complex field is a commutative C^* -algebra, if the involution is defined by $\lambda^* = \overline{\lambda}$ for $\lambda \in \mathbb{C}$.
- (2) The algebra $C_0(T)$ (where T is locally compact space) is a commutative C^{*}-algebra, if the involution is defined by $f^*(t) = \overline{f(t)}$ for $t \in T$.
- (3) The matrix algebra M_n is a C^* -algebra if the involution is defined by

$$\left((a_{ij})_{\substack{i=1,...,n\\j=1,...,n}} \right)^* = (\overline{a_{ji}})_{\substack{i=1,...,n\\j=1,...,n}}.$$

- (4) If H is a Hilbert space, then the algebras L(H) and K(H) are C^{*}-algebras, if the involution T^* is defined to be the adjoint operator to T.
- (5) On the algebra $L^1(\mathbb{R}^n)$ one can define an involution by $f^*(x) = \overline{f(x)}$, $x \in \mathbb{R}^n$; or by $f^*(x) = \overline{f(-x)}$, $x \in \mathbb{R}^n$. $L^1(\mathbb{R}^n)$ is not a C^* -algebra with any of these involutions.

Proposition 26 (properties of algebras with involution). Let A be a Banach algebra with involution and let $x \in A$. Then:

- (a) Elements $x + x^*$, $i(x x^*)$, x^*x are selfadjoint.
- (b) There exist uniquely determined selfadjoint elements $u, v \in A$ such that x = u + iv. Moreover, x is normal if and only if uv = vu.
- (c) If A is unital, then $x \in G(A)$ if and only if $x^* \in G(A)$ (then $(x^*)^{-1} = (x^{-1})^*$).
- (d) $\sigma(x^*) = \{\overline{\lambda} : \lambda \in \sigma(x)\}.$

Proposition 27 (on the spectral radius and the norm of a normal element). If A is a C^* -algebra and $a \in A$ is normal, then r(a) = ||a||.

Corollary 28. Let A be an algebra with involution. Then there is at most one norm $\|\cdot\|$ such that $(A, \|\cdot\|)$ is a C^{*}-algebra.

Proposition 29 (adding a unit). Let A be a Banach algebra with involution.

- (a) A^+ is again a Banach algebra with involution, provided the involution is defined by $(a, \lambda)^* = (a^*, \overline{\lambda})$ for $(a, \lambda) \in A^+$.
- (b) If A is a C^{*}-algebra, then A^+ is also a C^{*}-algebra, if the involution is defined as in (a) and the norm on A^+ is defined by

 $||(a,\lambda)|| = \max\{|\lambda|, \sup\{||ab + \lambda b||; b \in A, ||b|| \le 1\}\}.$

(c) If A is a C^* -algebra with no unit, then the norm defined in (b) can be expressed as

 $||(a,\lambda)|| = \sup\{||ab + \lambda b|| ; b \in A, ||b|| \le 1\}.$

Remark: The norm on A^+ defined in Proposition 29(b) differs from the norm given in Proposition 2(b). It follows from Corollary 28 that the formula from Proposition 29(b) is the unique possible.

Definition. Let A and B be C^{*}-algebras and let $h : B \to A$. We say that h is a *-homomorphism, if it is a homomorphism of Banach algebras satisfying moreover $h(x^*) = h(x)^*$ for each $x \in B$.

Proposition 30 (on the automatic continuity of a *-homomorphism). Let A and B be C^* -algebras and let $h: B \to A$ be a *-homomorphism of B into A. Then $||h|| \leq 1$.

Example 31. Let K, L be compact Hausdorff spaces and let $\varphi : \mathcal{C}(K) \to \mathcal{C}(L)$ be a *homomorphism satisfying $\varphi(1) = 1$. Then there is a continuous mapping $\alpha : L \to K$ such that $\varphi(f) = f \circ \alpha$ for $f \in \mathcal{C}(K)$. If φ is moreover one-to-one, then $\alpha(L) = K$, so φ is an isometry of $\mathcal{C}(K)$ into $\mathcal{C}(L)$.

Proposition 32. Let A be a C^* -algebra and let $a \in A$. Then:

- (a) If a is selfadjoint, then $\sigma(a) \subset \mathbb{R}$.
- (b) If A is unital and $a^* = a^{-1}$ (i.e., a is unitary), then $\sigma(a) \subset \mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$.
- (c) For $h \in \Delta(A)$ and $a \in A$ one has $h(a^*) = \overline{h(a)}$ (i.e., h is a *-homomorphism whenever it is a homomorphism).

Theorem 33 (Gelfand-Naimark). Let A be a commutative C^* -algebra and let $\Gamma : A \to C_0(\Delta(A))$ be its Gelfand transform. Then Γ is an isometric *-isomorphism of the C^* -algebra A onto the C^* -algebra $C_0(\Delta(A))$ (in particular $\widehat{x^*} = \overline{x}$ for $x \in A$).

Therefore, A is unital if and only if $\Delta(A)$ is compact.

Corollary 34. Let A and B be commutative C^* -algebras. Then A and B are *-isomorphic if and only if $\Delta(A)$ and $\Delta(B)$ are homeomorphic.

Corollary 35. Let A and B be C^* -algebras and let $h : B \to A$ be a one-to-one *-homomorphism of B into A. Then h is an isometry of B into A.