IV. 6 Continuous functional calculus in C^{*}-algebras

Proposition 36. Let A be a C^{*}-algebra and $B \subset A$ its C^{*}-subalgebra.
(a) For each $x \in B$ one has $\sigma_{B}(x) \cup\{0\}=\sigma_{A}(x) \cup\{0\}$.
(b) If A has a unit e and, moreover, $e \in B$, then $\sigma_{B}(x)=\sigma_{A}(x)$ for each $x \in B$. In particular, $G(B)=B \cap G(A)$.

Theorem 37 (Fuglede). Let A be a C^{*}-algebra and let $x \in A$ be a normal element. If $y \in A$ commutes with x, it commutes also with x^{*}.

Theorem 38 (continuous functional calculus in unital C^{*}-algebras). Let A be a C^{*}-algebra with a unit e and let $x \in A$ be a normal element. Let B be the closed subalgebra of A generated by the set $\left\{e, x, x^{*}\right\}$. Then:

- B is a commutative C^{*}-algebra and e is its unit.
- The mapping $h: \varphi \mapsto \varphi(x)$ is a homeomorphism of $\Delta(B)$ onto $\sigma(x)$.

Let $\Gamma: B \rightarrow \mathcal{C}(\Delta(B))$ be the Gelfand transform of the algebra B. For $f \in$ $\mathcal{C}(\sigma(x))$ define

$$
\tilde{f}(x)=\Gamma^{-1}(f \circ h) .
$$

Then the mapping $\Phi: f \mapsto \tilde{f}(x)$, called the continuous functional calculus for x, enjoys the following properties:
(a) Φ is an isometric *-isomorphism of the C^{*}-algebra $\mathcal{C}(\sigma(x))$ onto B.
(b) $\tilde{i d}(x)=x, \tilde{1}(x)=e$.
(c) If p is a polynomial, then $\tilde{p}(x)=p(x)$.
(d) $\sigma(\tilde{f}(x))=f(\sigma(x))$ for $f \in \mathcal{C}(\sigma(x))$.
(e) If $y \in A$ commutes with x, then y commutes with $\tilde{f}(x)$ for each $f \in$ $\mathcal{C}(\sigma(x))$.
Moreover, Φ is the unique mapping satisfying the first two conditions.
Remark: By Proposition $36 \sigma_{A}(x)=\sigma_{B}(x)$ in the preceding theorem, therefore we write just $\sigma(x)$.

Theorem 39 (continuous functional calculus in general C^{*}-algebras). Let A be a C^{*}-algebra (unital or not) and let $x \in A$ be a normal element. Let B be the closed subalgebra of A generated by the set $\left\{x, x^{*}\right\}$. Then:

- B is a commutative C^{*} algebra.
- The mapping $h: \varphi \mapsto \varphi(x)$ is a homeomorphism of $\Delta(B) \cup\{0\}$ onto $\sigma(x) \cup\{0\}$.
Let $\Gamma: B \rightarrow \mathcal{C}_{0}(\Delta(B))$ be the Gelfand transform of the algebra B. For $f \in$ $\mathcal{C}_{0}(\sigma(x) \backslash\{0\})$ define

$$
\tilde{f}(x)=\Gamma^{-1}(f \circ h)
$$

Then the mapping $\Phi: f \mapsto \tilde{f}(x)$, called the continuous functional calculus for x, enjoys the following properties:
(a) Φ is an isometric $*$-isomorphism of the C^{*}-algebra $\mathcal{C}_{0}(\sigma(x) \backslash\{0\})$ onto B.
(b) $\tilde{i d}(x)=x$.
(c) If p is a polynomial satisfying $p(0)=0$, then $\tilde{p}(x)=p(x)$.
(d) $\sigma(\tilde{f}(x)) \cup\{0\}=f(\sigma(x) \backslash\{0\}) \cup\{0\}$ for $f \in \mathcal{C}_{0}(\sigma(x) \backslash\{0\})$.
(e) If $y \in A$ commutes with x, then y commutes with $\tilde{f}(x)$ for each $f \in$ $\mathcal{C}_{0}(\sigma(x) \backslash\{0\})$.
Moreover, Φ is the unique mapping satisfying the first two conditions.

Remarks:

(1) By Proposition $36 \sigma_{A}(x) \cup\{0\}=\sigma_{B}(x) \cup\{0\}$ in the preceding theorem, hence also $\sigma_{A}(x) \backslash\{0\}=\sigma_{B}(x) \backslash\{0\}$. Therefore we write just $\sigma(x)$.
(2) The algebra B from Theorem 39 is unital, if and only if $\sigma(x) \backslash\{0\}$ is compact. Its unit may differ from the unit of A (if it exists). There are the following possibilities:
(a) $0 \notin \sigma_{B}(x)=\sigma_{A}(x)$. Then A is unital, the unit of A belongs to B and x is invertible (both in A and in B).
(b) $0 \in \sigma_{A}(x) \backslash \sigma_{B}(x)$. Then B admits a unit which is not a unit of A (either A has no unit, or it has a unit which does not belong to B) and x is invertible in $B($ not in $A)$.
(3) If $\sigma(x) \backslash\{0\}$ is compact, then $\mathcal{C}_{0}(\sigma(x) \backslash\{0\})$ is just $\mathcal{C}(\sigma(x) \backslash\{0\})$.
(4) If $0 \in \sigma_{A}(x)$ (this happens whenever $\sigma(x) \backslash\{0\}$ is not compact, but not only in this case), then one can identify $\mathcal{C}_{0}(\sigma(x) \backslash\{0\})=\{f \in$ $\left.\mathcal{C}\left(\sigma_{A}(x)\right) ; f(0)=0\right\}$ 。

