
I.4 Metrizability of topologial vetor spaes

Theorem 12 (haraterization of metrizable TVS). Let (X, T ) be a HTVS. The following assertions are equiv-

alent:

(i) X is metrizable (i.e., the topology T is generated by a metri on X).

(ii) There exists a translation invariant metri on X generating the topology T .

(iii) There exists a ountable base of neighborhoods of o in (X, T ).

Proposition 13. Let (X, T ) be a HTVS whih has a ountable base of neighborhoods of o. Then there exists

a funtion p : X → [0,∞) with the following properties:

(a) p(o) = 0;

(b) ∀x ∈ X \ {o} : p(x) > 0;

() ∀x ∈ X∀λ ∈ F, |λ| ≤ 1 : p(λx) ≤ p(x);

(d) ∀x, y ∈ X : p(x+ y) ≤ p(x) + p(y);

(e) ∀x ∈ X : lim

t→0+

p(tx) = 0;

(f)

{

{x ∈ X ; p(x) < r}; r > 0

}

is a base of neighborhoods of o in X .

Then the formula ρ(x, y) = p(x− y), x, y ∈ X , de�nes a translation invariant metri on X generating the topology

T .

Remark. Given a vetor spae X , a funtion p : X → [0,∞) satisfying onditions (a){(e) from the previous

proposition is alled an F-norm on X . If p satis�es onditions (a),(){(e), it is alled an F-seminorm.

Corollary 14. Any HTVS whih admits a bounded neighborhood of zero is metrizable.

V.5 Minkowski funtionals, seminorms

and generating of loally onvex topologies

De�nition. Let X be a vetor spae and let A ⊂ X be an absorbing set. By the Minkowski funtional of the set A

we mean the funtion de�ned by the formula

pA(x) = inf{λ > 0;x ∈ λA}, x ∈ X.

Proposition 15 (basi properties of Minkowski funtionals). Let X be a vetor spae and let A ⊂ X be an

absorbing set.

• pA(tx) = tpA(x) whever x ∈ X and t > 0.

• If A is onvex, pA is a sublinear funtional.

• If A is absolutely onvex, pA is a seminorm.

Lemma 16. Let X be a TVS and let A ⊂ X be a onvex set. If x ∈ A and y ∈ IntA, then {tx+ (1− t)y; t ∈
[0, 1)} ⊂ IntA.

Proposition 17 (on the Minkowski funtional of a onvex neighborhood of zero). Let X be a TVS amd let

A ⊂ X be a onvex neighborhood of o. Then:

• pA is ontinuous on X .

• IntA = {x ∈ X ; pA(x) < 1}.
• A = {x ∈ X ; pA(x) ≤ 1}.
• pA = p

A
= p

IntA.

Corollary 18. Any LCS is ompletely regular. Any HLCS is Tyhono�.

Remark: It an be shown that even any TVS is ompletely regular, and so any HTVS is Tyhono�. The proof

is more ompliated, one an use a generalization of Proposition 13 from Setion V.4. The proof that any TVS is

regular is easy, it follows from Proposition 3(ii).

Theorem 19 (on the topology generated by a family of seminorms). Let X be a vetor spae and let P be a

nonempty family of seminorms on X . Then there exists a unique topology T na X suh that (X, T ) is TVS and

the family

{

{x ∈ X ; p
1

(x) < c
1

, . . . , pk(x) < ck}; p1, . . . , pk ∈ P , c
1

, . . . , ck > 0

}

is a base of neighborhoods of o in (X, T ). The topology T is moreover loally onvex. The topology T is Hausdor�

if and only if for eah x ∈ X \ {o} there exists p ∈ P suh that p(x) > 0.



De�nition. The topology T from Theorem 19 is alled the topology generated by the family of seminorms P .

Theorem 20 (on generating of loally onvex topologies). Let (X, T ) be a LCS. Let PT be the family of all

ontinuous seminorms on (X, T ). Then the topology generated by the family PT equals T .

Proposition 21. Let X be a vetor spae.

(1) If p is a seminorm on X , then the set A = {x ∈ X ; p(x) < 1} is absolutely onvex, absorbing and satis�es

p = pA.

(2) Let p, q be two seminorms on X . Then p ≤ q if and only if

{x ∈ X ; p(x) < 1} ⊃ {x ∈ X ; q(x) < 1}.
(3) Let P be a nonempty family of seminorms on X and let T be the topology generated by the family P . Let

p be a seminorm on X . Then p is T -ontinuous if and only if there exist p
1

, . . . , pk ∈ P and c > 0 suh

that p ≤ c ·max{p
1

, . . . , pk}.

Theorem 22 (on metrizability of LCS). Let (X, T ) be a HLCS. The following assertions are equivalent:

(i) X is metrizable (i.e., the topology T is generated by a metri on X).

(ii) There exists a translation invariant metri on X generating the topology T .

(iii) There exists a ountable base of neighborhoods of o in (X, T ).

(iv) The topology T is generated by a ountable family of seminorms.

Proposition 23. (1) Let (X, T ) be a metrizable LCS. Then the topology T is generated by a sequene of

seminorms (pn) satisfying

p
1

≤ p
2

≤ p
3

≤ . . .

(2) Let X be a vetor spae and let (pn) be a sequene of seminorms on X satisfying onditions:

• p
1

≤ p
2

≤ p
3

≤;

• ∀x ∈ X \ {o} ∃n: pn(x) > 0.

Then

ρ(x, y) =

∞
∑

n=1

1

2

n
min{1, pn(x− y)}, x, y ∈ X

is a translation invariant metri on X whih generates the loally onvex topology on X generated by the sequene

of seminorms (pn). Moreover, given a sequene (xk) in X we have

(a) ρ(xk, x) → 0 ⇔ ∀n ∈ N: pn(xk − x)
k

−→ 0;

(b) the sequene (xk) is Cauhy in ρ if and only of it is Cauhy in eah of the seminorms pn.

Theorem 24 (a haraterization of normable TVS). Let (X, T ) be a HTVS. Then X is normable (i.e., T is

generated by a norm) if and only if X admits a bounded onvex neighborhood of o.

Proposition 25. Let X be a LCS.

(a) The set A ⊂ X is bounded if and only if eah ontinuous seminorm p on X is bounded on A. (It is enough

to test it for a family of seminorms generating the topology of X .)

(b) Let Y be a LCS and let L : X → Y be a linear mapping. Then L is ontinuous if and only if

∀q a ontinuous seminorm on Y ∃p a ontinuous seminorm on X ∀x ∈ X : q(L(x)) ≤ p(x).

If P is a family of seminorms generating the topology of X and Q is a family of seminorms generating the

topology of Y , then the ontinuity of L is equivalent to the ondition

∀q ∈ Q∃p
1

, . . . , pk ∈ P ∃c > 0 ∀x ∈ X : q(L(x)) ≤ c ·max{p
1

(x), . . . , pk(x)}.
() A net (xτ ) onverges to x ∈ X if and only if p(xτ − x) → 0 for eah ontinuous seminorm p on X . (It is

enough to test it for a family of seminorms generating the topology of X .)


