I.6 F-spaces and Fréchet spaces

Definition. Let (X, \mathcal{T}) be a TVS.

- The space X is said to be an F-space if \mathcal{T} is generated by a complete translation invariant metric.
- A Locally convex *F*-space is said to be a **Fréchet space**.

Examples 26.

- (1) Any Banach space is a Fréchet space as well.
- (2) The space $L^p(\mu)$ for $p \in (0,1)$ is an *F*-space.
- (3) The spaces $\mathbb{F}^{\mathbb{N}}$, $\mathcal{C}(\mathbb{R},\mathbb{F})$, $H(\Omega)$, $\mathscr{S}(\mathbb{R}^d)$ and $\mathscr{D}_K(\Omega)$ mentioned in Examples 1 are Fréchet spaces.

Proposition 27. Let (X, \mathcal{T}) be an *F*-space. Then any translation invariant metric generating the topology \mathcal{T} is complete.

Proposition 28. Let X be an F-space. Then a set $A \subset X$ is compact if and only if it is totally bounded and closed.

Proposition 29. Let X be a LCS and let $A \subset X$ be totally bounded. Then aco A is totally bounded as well.

Corollary 30. Let X be a Fréchet space and let $A \subset X$ be a compact subset. Then $\overline{\operatorname{aco} A}$ is compact as well.

Theorem 31 (Banach-Steinhaus). Let X be a Fréchet space and let Y be a LCS. Let (T_n) be a sequence of continuous linear mappings $T_n : X \to Y$. Suppose that the limit $\lim_{n \to \infty} T_n x$ exists in Y for each $x \in X$. Then the mapping $T : X \to Y$ defined by the formula $Tx = \lim_{n \to \infty} T_n x$, $x \in X$, is continuous.

Remark: Theorem 30 holds true under weaker assumptions – that X is an F-space and Y is a TVS. The proof is similar, but uses a more advanced notion of equicontinuity.

Theorem 32 (open mapping theorem). Let X and Y be F-spaces and let $T : X \to Y$ be a continuous linear mapping of X onto Y. Then T is an open mapping. In particular, if T is moreover one-to-one, T^{-1} is continuous, i.e., T is an isomorphism of X onto Y.