
III.2 Integrability of vetor-valued funtions

De�nition.

• Let f : 
 → X be a simple measurable funtion of the form f =

∑k

j=1 xjχEj
(where E

1

, . . . , Ek ∈

� are pairwise disjoint and x
1

, . . . , xk ∈ X). Let E ∈ �. We say that f is integrable over E, if for

eah j ∈ {1, . . . , k} one has either µ(E ∩Ej) < ∞ or xj = o. By the integral of f over E we mean

the element of X de�ned by the formula

∫

E

f dµ =

k
∑

j=1

µ(E ∩Ej)xj ,

where by onvention ∞ · o = o. If f is integrable over 
, it is alled integrable.

• Let f : 
 → X be strongly µ-measurable. The funtion f is said to be Bohner integrable if there

exists a sequene (fn) of simple integrable funtions suh that

lim

n→∞

∫




‖fn(ω)− f(ω)‖ dµ(ω) = 0,

where the integral is in the Lebesgue sense. By the Bohner integral of f we then mean the element

of X de�ned by

(B)

∫




f dµ = lim

n→∞

∫




fn dµ.

• A funtion f : 
 → X is said to be weakly integrable if ϕ ◦ f is integrable (i.e., ϕ ◦ f ∈ L1(µ)) for

eah ϕ ∈ X∗
.

Proposition 7 (basi properties of the Bohner integral).

(a) Integrable simple funtions form a vetor spae; and the mapping assigning to a simple integrable

funtion f its integral

∫




f dµ is linear.

(b) Let f be a simple measurable funtion. Then f is integrable if and only if the funtion ω 7→ ‖f(ω)‖
is integrable. In this ase

∥

∥

∥

∥

∫




f dµ

∥

∥

∥

∥

≤

∫




‖f(ω)‖ dµ(ω).

() The limit de�ning the Bohner integral does exist and does not depend on the hoie of the

sequene (fn).

(d) Bohner integrable funtions form a vetor spae; and the mapping assigning to a Bohner

integrable funtion its Bohner integral is linear.

(e) If f : 
 → X is Bohner integrable, then the funtion ω 7→ ‖f(ω)‖ is integrable and

∥

∥

∥

∥

(B)

∫




f dµ

∥

∥

∥

∥

≤

∫




‖f(ω)‖ dµ(ω).

(f) If f : 
 → X Bohner integrable, then χE · f is Bohner integrable for eah E ∈ �. (The value

(B)

∫




χE · f dµ is alled the Bohner integral of f over E and it is denoted by (B)

∫

E
f dµ.)

Theorem 8 (a haraterization of Bohner integrability). Let f : 
 → X be a strongly µ-measurable

funtion. Then f is Bohner integrable if and only if

∫




‖f(ω)‖ dµ(ω) < ∞.

Theorem 9 (Lebesgue dominated onvergene theorem for Bohner integral). Let (fn) be a sequene

of Bohner integrable funtions fn : 
 → X almost everywhere onverging to a funtion f : 
 → X. Let

g : 
 → R be an integrable funtion suh that for eah n ∈ N one has ‖fn(ω)‖ ≤ g(ω) for almost all

ω ∈ 
. Then f is Bohner integrable and (B)

∫




f dµ = lim

n→∞

(B)

∫




fn dµ.



Proposition 10 (absolute ontinuity of Bohner integral). Let f : 
 → X be Bohner integrable.

Then:

∀ε > 0∃δ > 0∀E ∈ � : µ(E) < δ ⇒

∥

∥

∥

∥

∫

E

f dµ

∥

∥

∥

∥

< ε.

Proposition 11 (weak integral). Let f : 
 → X be weakly integrable. Then the mapping

F (ϕ) =

∫




ϕ ◦ f dµ, ϕ ∈ X∗,

is a ontinuous linear funtional on X∗
, i.e., F ∈ X∗∗

.

De�nition, notation and remarks:

(1) The element F ∈ X∗∗
provided by Proposition 11 is alled the weak integral (or the Dunford

integral) of f , it is denoted by (D)

∫




f dµ.

(2) Let f : 
 → X be weakly integrable. Then χE · f is weakly integrable for eah E ∈ �. The

respetive weak integral is denoted by (D)

∫

E
f dµ.

(3) We say that f : 
 → X is Pettis integrable if

◦ f is weakly integrable and, moreover,

◦ the weak integral (D)

∫

E
f dµ belongs to κ(X) (where κ : X → X∗∗

is the anonial

embedding) for eah E ∈ �.

The Pettis integral of f over E is then the respetive element of X and it is denoted by (P )

∫

E
f dµ.

I.e., for x ∈ X then one has

x = (P )

∫

E

f dµ ⇔ ∀ϕ ∈ X∗
: ϕ(x) =

∫

E

ϕ ◦ f dµ.

Remarks:

(1) In order that f is Pettis integrable, (D)

∫

E
f dµ ∈ κ(X) should hold for eah E ∈ �. It is not

enough if it is satis�ed in ase E = 
.

(2) A weakly integrable funtion need not be Pettis integrable.

(3) A Pettis integrable funtion need not be strongly µ-measurable. For example, the funtion from

Example 6(1) is Pettis integrable, its integral is zero, but it is not essentially separably valued.

(4) Any Bohner integrable funtion is Pettis integrable (this follows from Proposition 12 below), the

onverse impliation fails even for pro strongly µ-measurable funtions (see Example 13 below).

Proposition 12 (Bohner integral and a bounded operator). Let f : 
 → X be Bohner integrable,

let Y be a Banah spae and let L : X → Y be a bounded linear operator. Then L ◦ f is Bohner

integrable and

(B)

∫




L ◦ f dµ = L

(

(B)

∫




f dµ

)

.

Remark: The preeding proposition shows that the Bohner integrability implies the Pettis one and,

moreover, it an be use to ompute the Bohner integral of a funtion: To this end it is neessary to show

that the Bohner integral exists, its value an be then omputed using suitable funtionals or operators.

Example 13. Let 
 = N, let � be the σ-algebra of all the subsets of N, let µ be the ounting measure

and let f : 
 → X. Then:

(a) f is Bohner integrable if and only if the series

∑

n∈N
f(n) is absolutely onvergent. The Bohner

integral then equals the sum of the series.

(b) If the series

∑

n∈N
f(n) is unonditionally onvergent, then f is Pettis integrable and its Pettis

integral equals the sum of the series.

Remark: In Example 13(b) the onverse impliation holds as well { if f is Pettis integrable, then the

series

∑

n∈N
f(n) is unonditionally onvergent. The proof is more ompliated, this statement is the

ontent of Orliz-Pettis theorem.


