FUNCTIONAL ANALYSIS 1

WINTER SEMESTER 2021/2022

PROBLEMS TO CHAPTER I

Problems to Section I. 1 - Linear Topologies and Their generation

Problem 1. Let X be a vector space and let $A \subset X$ be a nonempty set. Show that A is convex if and only if $(\alpha+\beta) A=\alpha A+\beta A$ for each $\alpha, \beta>0$.

Problem 2. Let X be a vector space and let \mathcal{T} be a topology on X.
(1) Show that \mathcal{T} is translation invariant if and only if the addition on X is separately continuous (i.e. $x \mapsto x+y$ is continuous for each $y \in X$).
(2) Find X and \mathcal{T} such that the addition is continuous (in both variables simultaneously, as a mapping $X \times X \rightarrow X$) but the multiplication is not continuous.
(3) Let \mathcal{T} be translation invariant. Show that the addition is continuous (in both variables) if and only if for any neighborhood U of zero there is a neighborhood V of zero such that $V+V \subset U$.
(4) Find a topology on \mathbb{R}^{2}, in which the addition is separately continuous but not continuous.
(5) Let \mathcal{T} be translation invariant and let there exists a base of neighborhoods of zero consisting of convex sets. Show that the the mapping $x \mapsto \frac{x}{2}$ is continuous.
(6) Let \mathcal{T} be translation invariant and let there exists a base of neighborhoods of zero consisting of convex sets. Show that the addition is continuous (in both variables) if and only if the mapping $x \mapsto 2 x$ is continuous.
(7) Let \mathcal{T} be translation invariant and let there exists a base of neighborhoods of zero consisting of convex sets. Is the mapping $x \mapsto 2 x$ necessarily continuous?
(8) Assume that the addition is continous. Show that the mapping $x \mapsto n x$ is continuous for each $n \in N$.

Hint: (2) Consider the discrete topology. (4) Consider, for example, a neighborhood base of zero made by sets $\{(0,0)\} \cup\{(x, y) ;|y|<|x|<r\}, r>0$.

Problem 3. Let X be a vector space and let ρ be a translation invariant metric on X.
(1) Show that the addition is continuous (in both variables) in ρ.
(2) Using a counterexample show that the topology induced by ρ need not be linear.
(3) Show that ρ generates a linear topology on X if and only if

$$
\lim _{x \rightarrow \boldsymbol{o}} \sup _{\lambda \in \mathbb{F}, \mid \lambda \leq 1} \rho(\lambda x, \boldsymbol{o})=0 \text { and } \forall x \in X: \lim _{\lambda \rightarrow 0} \rho(\lambda x, \boldsymbol{o})=0 .
$$

Hint: (1) Either use (3) from the previous problem or the sequential characterization of continuity. In both cases use moreover the triangle inequality.

Problem 4. Let X be a vector space. Let \mathcal{U} be the family of all the absolutely convex absorbing subsets of X.
(1) Show that \mathcal{U} is a base of neighborhoods of zero in a Hausdorff locally convex topology \mathcal{T} on X.
(2) Show that this topology \mathcal{T} is the strongest locally convex topology on X.
(3) Show that any convergent sequence in (X, \mathcal{T}) is contained in a finite-dimensional subspace.
Hint: (3) Suppose it is not the case. Then there exists a linearly independent sequence (x_{n}) which converges to zero. Complete this sequence to an algebraic basis of X. Describe an absolutely convex absorbing set, not containing any of the vectors x_{n}.
Problem 5. (1) Let $A \subset \mathbb{R}^{2}$ be balanced and absorbing. Show that $A+A$ is a neighborhood of zero (in the standard topology).
(2) Find a balanced absorbing $A \subset \mathbb{R}^{2}$, which is not a neighborhood of zero.
(3) Using the previous two points deduce that the family of all the balanced absorbing subsets of \mathbb{R}^{2} is not the base of neighborhoods of zero in any linear topology on \mathbb{R}^{2}.

Hint: (1) Show that $A+A$ contains a rectangle of the form $[-a, a] \times[-b, b]$.
Problem 6. (1) Show that the convex hull of a balanced subset of a vector space is again balanced, and hence absolutely convex.
(2) Show that the balanced hull of a convex set need not be convex.

Hint: (2) Consider a suitable segment in \mathbb{R}^{2}.
Problem 7. Let X be the space of all the Lebesgue measurable functions on $[0,1]$ (with values in \mathbb{F}; we identify the functions, which are equal almost everywhere). For $f, g \in X$ set

$$
\rho(f, g)=\int_{0}^{1} \min \{1,|f-g|\} .
$$

(1) Show that ρ is a metric generating a linear topology on X.
(2) Show that the convergence of sequences in the metric ρ coincide with the convergence in measure.
(3) Is the resulting topology locally convex?

Hint: (1) Show that the operations are continuous using the convergence of sequences. (3) Show that for each $r>0$ the convex hull of the set $\{f \in X ; \rho(f, 0)<r\}$ is the whole X.

Problem 8. Let X be a TVS and let $A \subset X$ be a balanced set with nonempty interior.
(1) Show that $\operatorname{int} A$ is balanced if and only if $0 \in \operatorname{int} A$.
(2) Show on a counterexample that $\operatorname{int} A$ need not be balanced.

Problem 9. Let (X, \mathcal{T}) be a TVS and let $A \subset X$ be nonempty. Show that

$$
\bar{A}=\bigcap\{A+U ; U \in \mathcal{T}(0)\}
$$

Problem 10. Let (X, \mathcal{T}) be a non-Hausdorff TVS.

- Denote $Z=\overline{\{\boldsymbol{o}\}}=\bigcap \mathcal{T}(0)$. Show that Z is a vector subspace of X.
- Let $Y=X / Z$ be the quotient vector space and let $q: X \rightarrow Y$ be the canonical quotient mapping. Let \mathcal{R} be the quotient topology on Y (i.e., $\mathcal{R}=\{U \subset$ $\left.\left.Y ; q^{-1}(U) \in \mathcal{T}\right\}\right)$. Show that (Y, \mathcal{R}) is a HTVS.
- Show that (Y, \mathcal{R}) is locally convex if and only if (X, \mathcal{T}) is locally convex.

Problems to Section I. 2 - bounded Sets, continuous linear mappings
Problem 11. Let X be a TVS and let $A \subset X$. Show that A is bounded if and only if each countable subset of A is bounded.

Problem 12. Let X be a TVS and let $A, B \subset X$ be bounded sets. Show that the sets $A \cup B, A+B, \bar{A}, \mathrm{~b}(A)$ are bounded as well.

Problem 13. Let X be a LCS and let $A \subset X$ be a bounded set. Show that the sets co A and aco A are bounded as well.

Problem 14. Let $X=L^{p}([0,1])$ where $p \in(0,1)$. Show that $A=\left\{f \in X ;\|f\|_{p}<1\right\}$ is a bounded set whose convex hull is not bounded.

Hint: Show that co $A=X$.
Problem 15. Let X be a normed linear space and $A \subset X$. Show that A is bounded as a subspace of the TVS X if and only if it is bounded in the metric generated by the norm.

Problem 16. Let X be a TVS whose topology is generated by a translation invariant metric ρ.
(1) Show that any set $A \subset X$ bounded in X is bounded in the metric ρ as well.
(2) Show that a set $A \subset X$ bounded in the metric ρ need not be bounded in the TVS X.

Hint: (2) The metric ρ itself may be bounded.
Problem 17. Consider the space of test functions $\mathscr{D}(\Omega)$ with the topology from Example I.5(2). Let $\Lambda: \mathscr{D}(\Omega) \rightarrow \mathbb{F}$ be a linear functional. Show that $\Lambda \in \mathscr{D}^{\prime}(\Omega)$ (i.e., Λ is a distribution) if and only if Λ is continuous.

Problem 18. Consider the space (X, \mathcal{T}) from Problem 4. Show that any linear functional $L: X \rightarrow \mathbb{F}$ is continuous.

Problem 19. Let $X=\mathbb{F}^{\Gamma}$ and let $A \subset X$. Show that A is bounded in X if and only if it is „pointwise bounded", i.e., if and only if the set $\{x(\gamma) ; x \in A\}$ is bounded in \mathbb{F} for each $\gamma \in \Gamma$.

Problem 20. Let $X=\mathcal{C}([0,1])$ equipped with the topology of pointwise convergence, let $Y=\mathcal{C}([0,1])$ equipped with the topology generated by the metric ρ from Problem 7 and let $L: X \rightarrow Y$ be the identity mapping.
(1) Show that L maps bounded sets to bounded sets.
(2) Show that L is sequentially continuous (i.e., $f_{n} \rightarrow f$ in X implies $L f_{n} \rightarrow L f$ in Y).
(3) Show that L is not continuous.

Hint: (1) Let $A \subset X$ be bounded. For $n \in \mathbb{N}$ set $F_{n}=\{x \in[0,1] ; \forall f \in A:|f(x)| \leq n\}$. Show that F_{n} are closed subsets of $[0,1]$, whose union is the whole interval $[0,1]$. For $\varepsilon>0$ choose $n \in \mathbb{N}$ such that $\lambda\left([0,1] \backslash F_{n}\right)<\frac{\varepsilon}{2} ;$ and $m>n$ such that $\frac{n}{m}<\frac{\varepsilon}{2}$. Show that then $L(A) \subset m\{g \in$ $Y ; \rho(g, 0)<\varepsilon\}$. Deduce the boundedness of $L(A)$ in Y. (2) Use Lebesgue dominated convergence theorem. (3) Let $U=\left\{f \in Y ; \rho(f, 0)<\frac{1}{2}\right\}$. Then U is a neighborhood of zero in Y. Show that $L^{-1}(U)$ is not a neighborhood of zero in X. (For any finite $F \subset[0,1]$ find $f \in \mathcal{C}([0,1])$ such that $\left.f\right|_{F}=0$ but $f=1$ on a set of measure at least $\frac{1}{2}$.)

Problem 21. Let X be a TVS and let $\left(x_{n}\right)$ be a sequence of elements of X. Show that the sequence $\left(x_{n}\right)$ is bounded in X if and only if for any sequence $\left(\lambda_{n}\right)$ in \mathbb{F} one has $\lambda_{n} \rightarrow 0$ $\Rightarrow \lambda_{n} x_{n} \rightarrow \boldsymbol{o}$.
Problem 22. Let X be a metrizable TVS and let $\left(x_{n}\right)$ be a sequence of elements of X. Show that there exists a sequence of strictly positive numbers $\left(\lambda_{n}\right)$ such that $\lambda_{n} x_{n} \rightarrow \boldsymbol{o}$.

Hint: Let ρ be a metric generating the topology on X. Show and then use that $\lim _{t \rightarrow 0+} \rho(\boldsymbol{o}, t x)=0$ for each $x \in X$.

Problem 23. Is the assertion from Problem 22 true also for non-metrizable TVS?
Hint: Consider the space from Problem 4.
Problem 24. Let X be a TVS, whose topology is generated by a translation invariant metric ρ. Let $\left(x_{n}\right)$ be a sequence of elements X converging to zero. Show that there exists a sequence of positive numbers $\left(\lambda_{n}\right)$ such that $\lambda_{n} \rightarrow \infty$ and $\lambda_{n} x_{n} \rightarrow \boldsymbol{o}$.

Hint: By the translation invariance of ρ it follows $\rho(\boldsymbol{o}, n x) \leq n \rho(\boldsymbol{o}, x)$ for $x \in X$ and $n \in \mathbb{N}$.
Problem 25. Is the assertion from the previous problem valid for a general TVS?
Hint: Consider, e.g., $X=c_{0}$ or $X=\ell^{p}$ for $p \in(1, \infty)$ with the weak topology (see Section II.1), let $\left(x_{n}\right)$ be the sequence of canonical unit vectors.

Problems to Section I. 3 - Finite-dimensional and infinite-dimensional SPACES

Problem 26. Show that any finite-dimensional TVS is locally convex.
Hint: For a Hausdorff space use Proposition I.9. For the general case use Problem 10.
Problem 27. Let X be a vector space of infinite dimension. Show that on X there exists a Hausdorff linear topology, which is not locally convex.

Hint: Let $\left(e_{j}\right)_{j \in J}$ be an algebraic basis of X. Choose $p \in(0,1)$ and define a metric on X by $\rho\left(\sum a_{j} e_{j}, \sum b_{j} e_{j}\right)=\sum\left|a_{j}-b_{j}\right|^{p}$.

Problem 28. Let X be a metrizable TVS of infinite dimension. Show that there exists a discontinuous linear functional on X.

Hint: Use an algebraic basis of X and Problem 22.
Problem 29. Is there a a discontinuous linear functional on each infinite-dimensional HTVS (or HLCS)?

Hint: Use Problem 18.

Problems to Section I. 4 - metrizability of TVS

Problem 30. Let X be a vector space over \mathbb{F} and let $p: X \rightarrow[0, \infty)$ be an F-norm on X.
(1) Show that the formula $\rho(x, y)=p(x-y)$ defines a translation invariant metric on X, which generates a linear topology na X.
(2) Show that the family $\left\{\left\{x \in X ; p(x)<\frac{1}{n}\right\} ; n \in \mathbb{N}\right\}$ is a base of neighborhoods of zero in this topology.

Problem 31. Let X be a vector space over \mathbb{F} and let $q: X \rightarrow[0, \infty)$ be a quasinorm on X, i.e., a mapping with the following properties:

- $\forall x \in X: q(x)=0 \Leftrightarrow x=\boldsymbol{o}$;
- $\forall x \in X \forall \lambda \in \mathbb{F}: q(\lambda x)=|\lambda| q(x)$;
- $\exists C \geq 1 \forall x, y \in X: q(x+y) \leq C(q(x)+q(y))$.
(1) Show that the family $\{\{x \in X ; q(x)<r\} ; r \in(0, \infty)\}$ is a base of neighborhoods of zero in a linear topology on X.
(2) Show that this topology is metrizable.
(3) Show that $x_{n} \rightarrow x$ in this topology if and only if $q\left(x_{n}-x\right) \rightarrow 0$.

Hint: (2) Show that there exists a countable base of neighborhoods of zero.
Problem 32. Let X be a vector space over \mathbb{F}, let $q: X \rightarrow[0, \infty)$ be an F-norm on X and let $p \in(0,1)$. We say thate q is a p-norm, if $q(\lambda x)=|\lambda|^{p} q(x)$ for each $x \in X$ and $\lambda \in \mathbb{F}$.
(1) Show that the function $f \mapsto\|f\|_{p}$ is a p-norm on $L^{p}(\mu)$.
(2) Show that the function $f \mapsto\left(\|f\|_{p}\right)^{1 / p}$ is a quasinorm on $L^{p}(\mu)$.
(3) Let q be a p-norm on X. Show that $q^{1 / p}$ is a quasinorm on X and estimate C.

Hint: (2) is a special case of (3). Set $\alpha=\frac{1}{p}$. By analysing monotonicity of a suitable function show that $a^{\alpha}+b^{\alpha} \leq(a+b)^{\alpha} \leq 2^{\alpha-1}\left(a^{\alpha}+b^{\alpha}\right)$ whenever $a, b \geq 0$.

Problem 33. Let X be a TVS and let p be an F-seminorm on X. Show that p is continuous if and only if it is continous at zero.

Problem 34. Let X be a TVS and let U be a neigborhood of zero. Show that there exists a continuous F-seminorm p on X such that $\{x \in X ; p(x)<1\} \subset U$.

Hint: Let $\left(V_{n}\right)$ be sequence of balanced neighborhoods of zero satisfying $V_{1}+V_{1} \subset U$ and $V_{n+1}+V_{n+1} \subset V_{n}$ for $n \in N$. Apply the construction from the proof of Proposition I. 14 to this sequence.

Problem 35. Using the previous problem show that any TVS is completely regular.
Problems to Section I. 5 - Seminorms, Minkowski functionals, F-seminorms
Problem 36. On a counterexample show that the Minkowski functional of a balanced neighborhood of zero need not be continuous.

Hint: It may happen that there is $x \in X$ and numbers $0<a<b$ such that the segment $\{t x ; t \in$ $[a, b]\}$ is contained in the boundary of a given balanced neighborhood of zero. A counterexample may be constructed already in \mathbb{R}^{2}.

Problem 37. Let X be a TVS, let $A \subset X$ be a balanced neighborhood of zero and p_{A} its Minkowski functional. Show that the following three conditions are equivalent:
(i) p_{A} is continuous on X;
(ii) For each $x \in \bar{A}$ one has $\{t x ; t \in[0,1)\} \subset \operatorname{int} A$;
(iii) $\operatorname{int} A=\left\{x \in X ; p_{A}(x)<1\right\} \& \bar{A}=\left\{x \in X ; p_{A}(x) \leq 1\right\}$.

Problem 38. Let X be a TVS, let $A \subset X$ be a subset containing the origin and let $p \in(0,1)$. We say that the set A is p-convex if

$$
\forall x, y \in A \forall s, t \in[0,1]: s^{p}+t^{p}=1 \Rightarrow s x+t y \in A
$$

(1) Let A be p-convex, let $x_{1}, \ldots, x_{n} \in A$ and let $t_{1}, \ldots, t_{n} \in[0,1]$ satisfy $t_{1}^{p}+\cdots+t_{n}^{p}=$ 1. Show that $t_{1} x_{1}+\cdots+t_{n} x_{n} \in A$.
(2) Let $0<p<q<1$. Show that

$$
A \text { convex } \Rightarrow A q \text {-convex } \Rightarrow A p \text {-convex. }
$$

(3) On an example demonstrate that a p-convex set need not be convex.
(4) Let A be a p-convex neighborhood of zero. Show that its Minkowski functional is continuous.

Hint: (1) Use the mathematical induction. (2) Use that $0 \in A$. (3) Consider for example the set $\left\{f \in L^{p}([0,1]) ;\|f\|_{p}<1\right\}$. (4) Use the characterization from the previous problem.

Problem 39. Show that the topology from Problem 4 is generated by the family of all the seminorms on X.

Problem 40. Let X be a vector space and let \mathcal{P} be a family of F -seminorms na X.
(1) Show that the family

$$
\left\{\left\{x \in X ; p_{1}(x)<c_{1}, \ldots, p_{k}(x)<c_{k}\right\} ; p_{1}, \ldots, p_{k} \in \mathcal{P}, c_{1}, \ldots, c_{k}>0\right\}
$$

forms a base of neighborhoods of zero in a linear topology on X.
(2) Show that the F-seminorms from \mathcal{P} are continuous in this topology.
(3) Show that this topology is Hausdorff if and only if for each $x \in X \backslash\{\boldsymbol{o}\}$ there exists $p \in \mathcal{P}$ such that $p(x)>0$.

Problem 41. Let (X, \mathcal{T}) be a TVS. Let \mathcal{P} be the family of all the continuous F-seminorms on X. Show that the topology generated by the family \mathcal{P} in the sense of Problem 40 equals \mathcal{T}.

Hint: Use Problem 34.
Problem 42. Let X be a vector space. Show that on X there exists the strongest linear topology and that this topology is Hausdorff.

Hint: Apply the construction from Problem 40 to the family of all the F-seminorms on X.
Problem 43. Let X be a vector space of countable algebraic dimension. Show that the strongest linear topology on X is locally convex.

Hint: Let \mathcal{T} be the topology from Problem 4. Show that each F-seminorm on X is continuous in \mathcal{T} : Let p be an F-seminorm on X and let $\left(e_{n}\right)$ be an algebraic basis. For each $\varepsilon>0$ show that there is $\left(t_{n}\right)$, a sequence of strictly positive numbers such that aco $\left\{t_{n} e_{n} ; n \in \mathbb{N}\right\} \subset\{x ; p(x)<\varepsilon\}$.

Problem 44. Let X be vector space of uncountable algebraic dimension. Show that the strongest linear topology on X is not locally convex.

Hint: Show that the F-seminorm defined as in the Problem 27 is not continuous in the topology from Problem 4.

Problems to Section I. 6 - F-spaces, Fréchet spaces, totally bounded sets
Problem 45. Let $(X,\|\cdot\|)$ be a Banach space. Let $\|\|\cdot\|\|: X \rightarrow[0,+\infty]$ be a mapping satisfying the following properties:

- $\|\boldsymbol{\|}\| \|=0$;
- $\forall x \in X \forall \alpha \in \mathbb{F} \backslash\{0\}:\|||\alpha x|\|=|\alpha| \cdot| ||x|\| ;$
- $\forall x, y \in X:\||x+y|\| \leq\|||x|\|+\||\| y \|$;
- $\forall x \in X:\|x\| \leq\|\mid\| x \| ;$
- the function $|\|\cdot \mid\|$ is lower semicontinuous, i.e. the set $\{x \in X ;|\|x\|| \leq c\}$ is closed for each $c \in \mathbb{R}$.
Set $Y=\{x \in X ;|\|x \mid\|<+\infty\}$.
(1) Show that Y is a linear subspace of X.
(2) Show that $\|\|\cdot\|\|$ is a norm on Y and $(Y,\| \| \cdot\| \|)$ is a Banach space.

Hint: (2) To prove the completeness: Any $\|\|\cdot\|\|-$ Cauchy sequence $\left(x_{n}\right)$ is $\|\cdot\|$-Cauchy as well, hence it converges in X to some $x \in X$. It is necessary to show that $x \in Y$ and $\left\|\mid x_{n}-x\right\| \rightarrow 0$. To this end use the definition of a limit and lower semicontinuity, i.e.: $x_{n} \rightarrow x$ in X and $\left\|\mid x_{n}\right\| \| \leq c$ for each $n \Rightarrow\|\mid\| x \| \leq c$.

Problem 46. Prove the completeness of $\ell^{p}(\Gamma)$ for $1 \leq p<+\infty$ using completeness of $\ell^{\infty}(\Gamma)$ and Problem 45.

Problem 47. Let $(X,\|\cdot\|)$ be a Banach space. Let $\left(\|\|\cdot\|\|_{k}\right)$ be a sequence of functions on X satisfying conditions from Problem 45 and moreover

$$
\forall x \in X:\|x\| \leq\left\|\left||x|\left\|_{1} \leq\right\|\right||x|\right\|_{2} \leq\| \| x \|_{3} \leq \ldots
$$

Set $Y=\{x \in X ; \forall n \in \mathbb{N}:\|\mid\| x \|<+\infty\}$.
(1) Show that Y is a linear subspace of X.
(2) Show that Y is a Fréchet space if it is equipped with the locally convex topology generated by the sequence of norms $\left(\left|\||\cdot|\| \|_{n}\right)\right.$.

Hint: (2) Use Proposition I. 23 and the approach from Problem 45 to each of the norms $\||\cdot|\|_{n}$.

Problem 48. Let X be a TVS and let $A, B \subset X$ be totally bounded subsets. Show that the sets $A \cup B, A+B, \bar{A}, \mathrm{~b}(A)$ are totally bounded as well.

Problem 49. Let X be a TVS, whose topology is generated by a translation invariant metric ρ. Show that a set $A \subset X$ is totally bounded in the TVS X if and only if it is totally bounded in the metric ρ.

Problem 50. On a counterexample show that in an F-space which is not locally convex, the closed convex hull of a compact set need not be compact.

Hint: A counterexample may be constructed for example in $L^{p}([0,1])$ for $p \in(0,1)$: Choose strictly positive numbers ε, η and δ such that $p<\frac{1}{1+\varepsilon}, \frac{\eta}{\varepsilon}<p, \delta<\varepsilon$ and $\frac{\eta}{\varepsilon-\delta}<p$. For $n \in \mathbb{N}$ set $x_{n}=\frac{1}{n^{1+\eta}}, f_{n}=n^{1+\varepsilon} \chi_{\left(x_{n+1}, x_{n}\right)}$ and $t_{n}=\frac{1}{n^{1+\delta}}$. Show that $f_{n} \rightarrow 0$ in $L^{p}([0,1])$, and so $\left\{0, f_{1}, f_{2}, f_{3}, \ldots\right\}$ is a compact set. Further show, using the elements $\frac{t_{1} f_{1}+\cdots+t_{n} f_{n}}{t_{1}+\cdots+t_{n}}$, that the convex hull of the mentioned compact set is an ubbounded set in $L^{p}([0,1])$.

Problems to Section I. 7 - Separation theorems

Problem 51. Let $X=L^{p}([0,1])$ where $p \in(0,1)$. Show that $X^{*}=\{0\}$.
Hint: Show that the only two convex open sets in X are \emptyset and X.
Problem 52. Let $X=\ell^{p}$ where $p \in(0,1)$. Show that for each sequence $\boldsymbol{x}=\left(x_{n}\right) \in \ell^{\infty}$ the formula

$$
\varphi_{\boldsymbol{x}}(\boldsymbol{y})=\sum_{n=1}^{\infty} x_{n} y_{n}, \quad \boldsymbol{y}=\left(y_{n}\right) \in \ell^{p},
$$

defines a continuous linear fuctional on ℓ^{p}. Show that the mapping $\boldsymbol{x} \mapsto \varphi_{\boldsymbol{x}}$ is a linear bijection of ℓ^{∞} onto X^{*}.

Problem 53. Let $p \in(0,1)$. Show that ℓ^{p} is isomorphic (even linearly isometric) to a subspace of $L^{p}([0,1])$. Using the two previous problems demonstrate on a counterexample that a continous linear functional on a subspace of a TVS need not admit a continous linear extension to the whole space.
Problem 54. Let X be a normed linear space of infinite dimension. Show that in X there exist two disjoint convex sets which are dense in X (and hence they cannot be separated by a nonzero element of X^{*}).

Hint: Use the existence of a discontinuous linear functional.
Problem 55. Let $X=\mathcal{C}([0,1])$ be equipped with the L^{2}-norm (i.e., $\|f\|=\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2}$). For $\alpha \in \mathbb{R}$ define $Y_{\alpha}=\{f \in X ; f(0)=\alpha\}$. Show that $\left(Y_{\alpha} ; \alpha \in \mathbb{R}\right)$ is a pairwise disjoint family if dense convex sets. Show that for $\alpha \neq \beta$ the sets Y_{α} and Y_{β} cannot be separated by a nonzero element of X^{*}.

Problem 56. Let $X=c_{0}$ or $X=\ell^{p}$ for some $p \in[1, \infty)$ (consider the real version of these spaces). Let $\boldsymbol{x}=\left(x_{n}\right) \in X$ be an element with all the coordinates strictly positive and let $\boldsymbol{y}=\left(\frac{x_{n}}{n}\right) \in X$. Set

$$
A=\left\{\boldsymbol{z}=\left(z_{n}\right) \in X ; \forall n \in \mathbb{N}: z_{n} \geq 0\right\}, \quad B=\{-\boldsymbol{x}+t \boldsymbol{y} ; t \in \mathbb{R}\}
$$

Show that A and B are disjoint closed subsets of X, which cannot be separated by a nonzero element of X^{*}.

Hint: Proceed by contradiction: Let $f \in X^{*} \backslash\{0\}$ satisfy $\sup f(B) \leq \inf f(A)$. Show that necessarily $f \geq 0$ on A and $\inf f(A)=0$. The functional f can be represented by an appropriate sequence (by an element of ℓ^{1} or ℓ^{q} where $\frac{1}{p}+\frac{1}{q}=1$), show that all the entries of this sequence have to be non-negative. By the assumption $\inf f(B) \leq 0$ deduce $f(\boldsymbol{y})=0$, hence $f=0$, a contradiction.

