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PROBLEMS TO CHAPTER II

Problems to Section II.1 – general weak topologies

Problem 1. Let X = C([0, 1]) be equipped with the topology of pointwise convergence
on [0, 1]. Describe all the continuous linear functionals on X (i.e., describe X∗).

Hint: Use Theorem II.4.

Problem 2. Let X be a normed linear space which is not complete and let Y be its
completion.

(1) Show that X∗ = Y ∗ and explain what this equality means.
(2) Show that the topologies σ(Y ∗, Y ) and σ(Y ∗, X) are different.

Hint: (2) Use Theorem II.4.

Problem 3. Let X be a normed linear space, X∗ its dual and X∗∗ the second dual. Show
that the weak and weak* topologies on X∗ (i.e., the topologies σ(X∗, X∗∗) and σ(X∗, X))
coincide if and only if X is a reflexive Banach space.

Hint: Use Theorem II.4.

Problem 4. Let X be a normed linear space. Show that the canonical embedding κ :
X → X∗∗ is a homeomorphism of (X,w) into (X∗∗, w∗).

Hint: Use Proposition II.1(6).

Problem 5. By Problem I.52 and the Introduction to functional analysis we know that
(`p)∗ = `∞ for any p ∈ (0, 1].

(1) Show that the topologies σ(`∞, `p), p ∈ (0, 1], are pairwise distinct.
(2) Let 0 < p < q ≤ 1. Which one of the topologies σ(`∞, `p) and σ(`∞, `q) is weaker?

Hint: (1) Use Theorem II.4. (2) Use Proposition II.1(6).

Problem 6. Let X be a vector space and let M ⊂ X# separate points of X. Show that
the topology σ(X,M) is metrizable if and only if M does not contain an uncountable
linearly independent subset.

Hint: Use Theorem I.12 (or I.22) and Lemma II.3.

Problems to Section II.2 – weak topologies on locally convex spaces

Problem 7. Let X be a normed linear space. Show that (X, ‖·‖) is separable if and only
if (X,w) is separable.

Hint: Use Mazur theorem.
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Problem 8. Find an example of a Banach space X and a convex norm-closed subset of
X∗ which is not weak* closed.

Hint: Consider for example X = c0, hence X∗ = `1, and the closed convex hull of canonical

unit vectors in `1. Another examples follow by Goldstine theorem.

Problem 9. Let X and Y be LCS and let T : X → Y be a continuous linear mapping.
Show that T is continuous as a mapping of (X,w) to (Y,w) as well.

Hint: Use Proposition II.1(6).

Problem 10. Let X and Y be LCS and let T : X → Y be a continuous linear mapping.
For ϕ ∈ Y ∗ define a mapping T ′ϕ : X → F by T ′ϕ = ϕ ◦ T .

(1) Show that T ′ϕ ∈ X∗ for each ϕ ∈ Y ∗.
(2) Show that the mapping T ′ : ϕ 7→ T ′ϕ is a linear mapping of Y ∗ into X∗.
(3) Show that the mapping T ′ is continuous from (Y ∗, w∗) to (X∗, w∗).

Hint: (3) Use Proposition II.1(6).

Problem 11. Let X and Y be normed linear spaces and let T : Y ∗ → X∗ be a bounded
linear operator. Show that there exists S ∈ L(X, Y ) such that T = S ′, if and only if T is
continuous as a mapping of (Y ∗, w∗) into (X∗, w∗).

Hint: Consider theoperator T ′ : X∗∗ → Y ∗∗ and show that T ′(κ(X)) ⊂ κ(Y ) using Corollary

II.5(c).

Problem 12. Let X be a Hilbert space and let (en) be an orthonormal sequence in X.
Show that the sequence (en) converges weakly to zero.

Hint: Use the representation of the dual to a Hilbert space and the Bessel inequality.

Problem 13. Let X be a Hilbert space and let (eγ)γ∈Γ be an orthonormal system in X.
Show that the set {eγ; γ ∈ Γ} ∪ {o} is weakly compact.

Hint: Using the representation of the dual to a Hilbert space and the Bessel inequality show

that any weak neighborhood of zero contains all the elements of the orthonormal system except

for finitely many.

Problem 14. Let X = c0(Γ) or X = `p(Γ), where Γ is a set. Show that the set {o} ∪
{eγ; γ ∈ Γ} is weakly compact (eγ denotes the respective canonical unit vector).

Hint: Using the representation of X∗ show that any weak neighborhood of zero contains all

the canonical unit vectors except for finitely many.

Problem 15. Let X = C([0, 1]). Consider three topologies of X – the norm topology (i.e.,
the topology generated by the supremum norm), the weak one (i.e., the weak topology of
the space (X, ‖·‖∞) – let us denote it by w) and the topology of pointwise convergence
on [0, 1] (denote it by τp).

(1) Find a sequence (fn) in X converging to zero in τp, which is not bounded in the
norm.

(2) Show that there exists a τp-bounded set which is not norm-bounded.

(3) Let (fn) be a norm-bounded sequence in X and let f ∈ X. Show that fn
w→ f if

and only if fn
τp→ f .

(4) Does the equivalence in (3) hold without the assumption of norm boundedness?



Hint: (2) Use the sequence from (1). (3) Use Riesz theorem on the representation of C([0, 1])∗

and Lebesgue dominated convergence theorem. (4) Consider the sequence from (1).

Problem 16. Show that in the space `1 weak and norm convergences of sequences coincide
(i.e., `1 enjoys the Schur property).

Hint: Proceed by contradiction: If not, then in `1 there exists a sequence (xk) weakly conver-

ging to zero and a number c > 0 such that ‖xk‖ > c for each k ∈ N. Since (xk) is bounded,

without loss of generality ‖xk‖ = 1 for each k. Weak convergence implies the convergence on

each coordinate. By induction construct increasing sequences of natural numbers (kj) and (mj)

such that
∑mj+1

l=mj+1

∣∣xkj (l)∣∣ > 3
4 . Further find ϕ ∈ `∞ = (`1)∗ such that

∣∣ϕ(xkj )∣∣ > 1
2 for each j

and deduce a contradiction.

Problem 17. Show that the spaces c0, `p for p ∈ (1,∞] and C([0, 1]) fail the Schur
property.

Hint: In any of these spaces find a sequence on the unit sphere weakly converging to zero.

For C([0, 1]) use the description from Problem 15(3).

Problem 18. Show that an infinitedimensional Hilbert space fails the Schur property.

Hint: Use Problem 12.

Problem 19. Show that the space L1([0, 1]) fails the Schur property.

Hint: Let T : L2([0, 1]) → L1([0, 1]) be the identity. Consider the ON basis (fn) of the space

L2([0, 1]) known from the theory of Fourier series and consider the sequence (Tfn).

Problem 20. Let X be normed linear space of infinite dimension.

(1) Show that any weak neighborhood of zero contains a nontrivial vector subspace
of X.

(2) Show that SX is a weakly dense subset of BX .

Hint: (1) Show that any weak neighborhood of zero contains the interesection of kernels of a

finite number of functionals, and that this is a nontrivial vector subspace. (2) Use (1).

Problem 21. Let X je normed linear space of infinite dimension.

(1) Show that any weak* neighborhood of zero in X∗ contains a nontrivial vector
subspace of X∗.

(2) Show that SX∗ is weak* dense subset of BX∗ .

Hint: X∗ has infinite dimension as well and the weak* topology is weaker than the weak one,

hence one can apply Problem 20.

Problem 22. Let X be a normed linear space. Show that the following assertions are
equivalent:

(i) dimX <∞.
(ii) The weak and norm topologies on X coincide.

(iii) The weak* and norm topologies on X∗ coincide.



Problems to Section II.3 – polars and their applications

Problem 23. Let X be a separable normed linear space. Show that (X∗∗, w∗) is separable.

Hint: Use Goldstine theorem.

Problem 24. Show that ((`∞)∗, w∗) is separable.

Hint: `∞ = (`1)∗.

Problem 25. Let X be a metrizable LCS. Show that (X∗, w∗) is σ-compact (i.e., it is
the union of countably many compact subsets).

Hint: Use Theorem II.14 and a countable base of neighborhoods of zero in X.

Problem 26. Let X be a non-complete normed linear space and let Y be its completion.
By Problem 2 we know that X∗ = Y ∗ and σ(Y ∗, X) 6= σ(X∗, X). Show that on the unit
ball BX∗ the topologies σ(Y ∗, X) and σ(X∗, X) coincide.

Hint: By Corollary II.16 we know that (BY ∗ , σ(Y ∗, Y )) is compact and the topology σ(Y ∗, X)

is a weaker Hausdorff topology.

Problem 27. Consider the space `∞ as the dual to `1. Show that on the unit ball of `∞

the weak* topology σ(`∞, `1) coincides with the topology of pointwise convergence (i.e.
with the topology generated by the seminorms x = (xk)

∞
k=1 7→ |xn|, n ∈ N.

Hint: Use Problem 26.

Problem 28. Consider the space `1 as the dual to c0. Show that on the unit ball of `1

the weak* topology σ(`1, c0) coincides with the topology of pointwise convergence.

Hint: Use Problem 26.

Problem 29. Let p ∈ (1,∞). Show that on the unit ball of `p the weak topology coincides
with the topology of pointwise convergence.

Hint: Use Problem 26 and the reflexivity of `p.

Problem 30. Show that on the unit ball of c0 the weak topology coincides with the
topology of pointwise convergence.

Hint: Use Problems 4 and 27.

Problem 31. Let X be a LCS and let X∗ be its dual. For a nonempty A ⊂ X∗ define

qA(x) = sup{|f(x)| ; f ∈ A}, x ∈ X.
(1) Show that A is σ(X∗, X)-bounded if and only if qA(x) <∞ for each x ∈ X.
(2) Let A be σ(X∗, X)-bounded. Show that qA is a seminorm on X.
(3) Must qA be continuous on X?
(4) Let U be an absolutely convex neighborhood of zero in X. Show that pU = qU◦

(where pU is the Minkowski functional).

Hint: (3) Take an infinite-dimensional Banach space X equipped with the weak topology and

A = BX∗. (4) Use the bipolar theorem.



Problem 32. Let X be a normed linear space, C > 0 and f, g ∈ SX∗ . Let ‖f |ker g‖ ≤ C.
Show that there exists α ∈ F, |α| = 1 such that ‖f − αg‖ ≤ 2C.

Hint: If C ≥ 1 the statement is trivial, so suppose C < 1. By the Hahn-Banach theorem there

exists f̃ ∈ X∗, such that
∥∥∥f̃∥∥∥ ≤ C and f̃ = f on ker g. Since ker g ⊂ ker(f − f̃), there is β ∈ F

such that f − f̃ = βg. Show that one can take α = β
|β| .

Problem 33. Let X be a Banach space. Let f : X∗ → F be a linear functional such that
f |BX∗ is a weak* continuous mapping. Show that f ∈ κ(X).

Hint: Since f(BX∗) is a compact subset of F, one gets f ∈ X∗∗. The case f = 0 is trivial, so

without loss of generality ‖f‖ = 1. For ε ∈ (0, 1) set Aε = {x∗ ∈ BX∗ ; Re f(x∗) ≥ ε} and Bε =

{x∗ ∈ BX∗ ; Re f(x∗) ≤ −ε}. Then Aε and Bε are nonempty disjoint weak* compact convex sets,

hence by the separation theorem there exists g ∈ κ(X) such that supRe g(Bε) < inf Re g(Aε).

Deduce that ‖f |ker g‖ ≤ ε. Using Problem 32 then show that f belongs to the norm closure of

κ(X), so to κ(X).

Problem 34. Is the statement of the previous problem valid also for non-complete spaces?

Hint: Use Problem 26.


