FUNCTIONAL ANALYSIS 1

WINTER SEMESTER 2021/2022

PROBLEMS TO CHAPTER IV

PROBLEMS TO SECTION IV.1 – EXAMPLES OF BANACH ALGEBRAS, INVERTIBLE ELEMENTS

Problem 1. Let $A = (\mathbb{C}^n, \|\cdot\|_p)$, where $p \in [1, \infty]$ and $n \ge 2$. Equip A with the coordinatewise multiplication, i.e.,

$$(x_1, x_2..., x_n) \cdot (y_1, y_2..., y_n) = (x_1y_1, x_2y_2, ..., x_2y_n)$$

- (1) Show that A is a unital Banach algebra and find its unit.
- (2) Show that the unit has norm one if and only if $p = \infty$.
- (3) Apply on A the respective renorming and show, that the new norm is just $\|\cdot\|_{\infty}$.

Problem 2. Let M_n be the algebra of complex $n \times n$ -matrices equipped with the matrix multiplication. Recall that any $n \times n$ -matrix represents a linear mapping $\mathbb{C}^n \to \mathbb{C}^n$ and that the matrix multiplication corresponds to composition of linear mappings.

- (1) Fix $p \in [1, \infty]$ and equip M_n with the operator norm coming from $L((\mathbb{C}^n, \|\cdot\|_p))$. Show that M_n is then a unital Banach algebra and that the unit has norm one.
- (2) Show that for $p_1 \neq p_2$ the two norms defined in (1) are equivalent but different whenever $n \geq 2$.
- (3) Show that M_n is commutative if and only if n = 1.

Problem 3. Let M_n be the algebra of complex $n \times n$ -matrices equipped with the matrix multiplication. Equip M_n with the norm

$$||(a_{ij})_{i,j=1,\dots,n}|| = \sum_{i,j=1}^{n} |a_{ij}|.$$

Show that M_n equipped with this norm is a unital Banach algebra and its unit has norm greater than 1 (whenever $n \ge 2$).

Problem 4. Let $A = (\mathbb{C}^n, \|\cdot\|_{\infty})$, where $n \ge 2$.

(1) Define multiplication on A by

 $(x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = (x_1y_1, x_1y_2, \dots, x_1y_n).$

Show that A equipped with this multiplication is a Banach algebra and that A has many left units but no right unit.

(2) Define multiplication on A by

 $(x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = (x_1y_1, x_2y_1, \dots, x_2y_1).$

Show that A equipped with this multiplication is a Banach algebra and that A has many right units but no left unit.

(3) Represent the algebras from (1) and (2) as subalgebras of the matrix algebra M_n .

Hint: (3) Consider matrices with only one nonzero row or column.

Problem 5. Let $A = \ell^p(\Gamma)$, where $p \in [1, \infty]$ and Γ is an infinite set. Equip A with the pointwise multiplication.

- (1) Show that A is a Banach algebra.
- (2) Show that A is unital if and only if $p = \infty$.

Problem 6. Let X be any nontrivial Banach space. Define on X the trivial multiplication, i.e., $x \cdot y = o$ for $x, y \in X$.

- (1) Show that X is a Banach algebra with no unit.
- (2) Describe the unital algebra X^+ .
- (3) Represent the algebras X and X^+ as subalgebras of $L(X^+) = L(X \oplus_1 \mathbb{C})$.
- (4) Find a subalgebra of the matrix algebra M_n (where $n \ge 2$) isomorphic with such a trivial algebra.

Hint: (4) Use the description from (3) for $X = \mathbb{C}^{n-1}$.

Problem 7. Let A_1, \ldots, A_n be Banach algebras and let $p \in [1, \infty]$. Consider the vector space $A = A_1 \times A_2 \times \cdots \times A_n$, where the norm and multiplication are defined by

$$\|(a_1, \dots, a_n)\| = \|(\|a_1\|, \dots, \|a_n\|)\|_p,$$

$$(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) = (a_1b_1, \dots, a_nb_n).$$

- (1) Show that A is a Banach algebra.
- (2) Show that A is unital if and only if A_1, \ldots, A_n are unital. (Find the respective unit.)
- (3) Show that A is commutative if and only if A_1, \ldots, A_n are commutative.

Problem 8. Let T be a Hausdorff locally compact space. Consider the Banach space $C_0(T)$ (with the max-norm) and equip it with the pointwise multiplication.

- (1) Show that $\mathcal{C}_0(T)$ is a commutative Banach algebra.
- (2) Show that the algebra $\mathcal{C}_0(T)$ is unital if and only if T is compact.
- (3) Assume that T is not compact. Let $B = \text{span}(\mathcal{C}_0(T) \cup \{1\})$ as a subalgebra of $\ell^{\infty}(T)$. Show that B is (algebraically) isomorphic to $(\mathcal{C}_0(T))^+$ but not isometric.

Problem 9. Let K be a compact Hausdorff space and let A be a Banach algebra. Let $\mathcal{C}(K, A)$ be the vector space of all the continuous mappings $f : K \to A$. Equip $\mathcal{C}(K, A)$ with the norm and with the multiplication given by

$$||f|| = \sup\{||f(t)||; t \in K\}, \qquad f \in \mathcal{C}(K, A), (f \cdot g)(t) = f(t) \cdot g(t), \quad t \in K, \quad f, g \in \mathcal{C}(K, A).$$

- (1) Show that $\mathcal{C}(K, A)$ is a Banach algebra.
- (2) Show that $\mathcal{C}(K, A)$ is unital if and only if A is unital and find the unit.
- (3) Show that $\mathcal{C}(K, A)$ is commutative if and only if A is commutative.

Problem 10. Let X be a Banach space. Consider the space L(X) of all continuous linear operators on X equipped with the operator norm. Define the multiplication on L(X) as composing the operators.

- (1) Show that L(X) is a unital Banach algebra and find its unit.
- (2) Show that L(X) is commutative if and only if dim X = 1.

Hint: (2) If dim $X \ge 2$, choose $x_1, x_2 \in X$ linearly independent. Show that there exist $x_1^*, x_2^* \in X^*$ such that $x_1^*(x_1) = x_2^*(x_2) = 1$ and $x_1^*(x_2) = x_2^*(x_1) = 0$. Consider the operators of the form $x \mapsto x_i^*(x)x_j$ and their linear combinations.

Problem 11. Let X be a Banach space and let A = K(X) is the space of compact linear operators on X, considered as a subspace of L(X).

- (1) Show that A is a closed subalgebra of L(X), and so it is a Banach algebra.
- (2) Show that A is unital if and only if dim $X < \infty$.
- (3) Show that A is commutative if and only if dim X = 1.
- (4) Assume that dim $X = \infty$. Let $B = \text{span}(A \cup \{I\})$ as a subalgebra of L(X). Show that B is (algebraically) isomorphic to A^+ , but not isometric.

Hint: (3) Show that the operators used in Problem 10(2) are compact.

Problem 12. Let (G, +) be a commutative group. Equip the Banach space $\ell^1(G)$ with the multiplication * defined by

$$(f * g)(x) = \sum_{y \in G} f(y)g(x - y), \qquad f, g \in \ell^1(G).$$

Show that $\ell^1(G)$ is then a unital commutative Banach algebra and find its unit.

Problem 13. Let (G, \cdot) be a non-commutative group. Equip the Banach space $\ell^1(G)$ with the multiplication * defined by

$$(f * g)(x) = \sum_{y \in G} f(y)g(y^{-1}x), \qquad f, g \in \ell^1(G)$$

Show that $\ell^1(G)$ is then a unital non-commutative Banach algebra and find its unit.

Problem 14. Let $A = L^1(\mathbb{R}^n)$ where $n \in \mathbb{N}$ (with the standard norm). Define the multiplication * on A as the convolution, i.e.,

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) \,\mathrm{d}y, \quad x \in \mathbb{R}^n, f, g \in A.$$

- (1) Show that A is a commutative Banach algebra.
- (2) Show that A has no unit.

Hint: (1) Use properties of the convolution. (2) Assume that g is a unit. Then for each r > 0we have $g * \chi_{B(0,r)} = \chi_{B(0,r)}$. Deduce that $\chi_{B(0,r)}(x) = \int_{B(x,r)} g$ for almost all x, in particular $\int_{B(x,r)} g = 1$ almost everywhere B(0,r). For sufficiently small r derive a contradiction with $g \in L^1(\mathbb{R}^n)$.

Problem 15. Let $A = L^1([0,1])$ (with the standard norm). Define the multiplication * on A as the convolution, i.e.,

$$(f * g)(x) = \int_0^1 f(y)g(x - y \mod 1) \, \mathrm{d}y, \quad x \in [0, 1], f, g \in A.$$

(1) Show that A is a commutative Banach algebra.

(2) Show that A has no unit

Hint: (1) Use an analogous approach as in proving properties of the convolution. (2) Proceed similarly as in Problem 14(2).

Problem 16. Let (G, +) be a commutative compact topological group. (I.e., (G, +) is a commutative group equipped with a Hausdorff topology in which the operations $(x, y) \mapsto x + y$ and $x \mapsto -x$ are continuous, which is moreover compact in this topology.) Let $\mathcal{M}(G)$ be the space of all the complex Radon measures on G, equipped with the total variation norm and with the multiplication * defined by

$$(\mu * \nu)(A) = (\mu \times \nu)(\{(x, y) \in G \times G; x + y \in A\}),$$

where $\mu \times \nu$ denotes the respective product measure. Show that $\mathcal{M}(G)$ is then a unital commutative Banach algebra and find its unit.

Problem 17. Let (G, \cdot) be a non-commutative compact topological group. (I.e., (G, \cdot) is a non-commutative group equipped with a Hausdorff topology in which the operations $(x, y) \mapsto x \cdot y$ and $x \mapsto x^{-1}$ are continuous, which is moreover compact in this topology.) Let $\mathcal{M}(G)$ be the space of all the complex Radon measures on G, equipped with the total variation norm and with the multiplication * defined by

$$(\mu * \nu)(A) = (\mu \times \nu)(\{(x, y) \in G \times G; x \cdot y \in A\}),$$

where $\mu \times \nu$ denotes the respective product measure. Show that $\mathcal{M}(G)$ is then a unital non-commutative Banach algebra and find its unit.

Problem 18. Show that in the matrix algebra M_n an element has a right inverse if and only if it has a left inverse.

Problem 19. Let $A = L(\ell^2)$. Define two operators $S, T \in A$ by

$$S(x_1, x_2, \dots) = (x_2, x_3, \dots)$$
 and $T(x_1, x_2, \dots) = (0, x_1, x_2, \dots)$

- (1) Show that S and T are not invertible.
- (2) Show that S has a right inverse and describe all its right inverses.
- (3) Show that T has a left inverse and describe all its left inverses.

Problem 20. Let $G = (\mathbb{Z}_n, +)$ where $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ equipped with the addition modulo n. Let $A = \ell^1(G)$ be the Banach algebra described in Problem 12.

- (1) Represent A as a subalgebra of the matrix algebra M_n (with an appropriate norm).
- (2) For n = 2 and n = 3 explicitly characterize invertible elements in A.

Hint: (1) Embed A into L(A).

Problem 21. Let A be a Banach algebra. Define on A a new multiplication \odot by

$$x \odot y = y \cdot x, \quad x, y \in A.$$

- (1) Show that $A^{op} = (A, \odot)$ is a Banach algebra.
- (2) Show that A^{op} need not be (algebraically) isomorphic to A.
- (3) Let X be a reflexive Banach space. Show that $L(X)^{op}$ is isometrically isomorphic to $L(X^*)$.
- (4) Let H be a Hilbert space. Show that $L(H)^{op}$ is isometrically isomorphic to L(H).

Hint: (2) Use Problem 4.

PROBLEMS TO SECTION IV.2 – SPECTRUM AND ITS PROPERTIES

Problem 22. Let $A = \mathcal{C}(K)$ for a compact Hausdorff space K and let $f \in A$.

- (1) Show that $\sigma(f) = f(K)$.
- (2) Compute the resolvent function of f.

Problem 23. Let $A = C_0(T)$ for a noncompact locally compact space T.

- (1) Show that $\sigma(f) = f(T) \cup \{0\}$ for each $f \in A$.
- (2) Suppose that T is not σ -compact. Show that $\sigma(f) = f(T)$ for each $f \in A$.
- (3) In case $T = \mathbb{R}$ find an example of $f \in A$ with $f(T) \subsetneqq \sigma(f)$.

Hint: (1) Use the definition $\sigma_A(f) = \sigma_{A^+}(f)$ and a description of A^+ (for example that from Problem 8(3)). (2) $\{t \in T; f(t) \neq 0\}$ is σ -compact.

Problem 24. Let $A = \ell^1(\mathbb{Z}_n)$ (see Problem 20) and $x \in A$.

- (1) Characterize $\sigma(x)$ as the set of eigenvalues of certain matrix.
- (2) For n = 2, 3 compute $\sigma(x)$ and the resolvent function explicitly.

Hint: Use the solution of Problem 20.

Problem 25. Let $\mathbb{T} = \{z \in \mathcal{C}; |z| = 1\}$, $A = \mathcal{C}(\mathbb{T})$ and f(z) = z for $z \in \mathbb{T}$. Let B be the unital closed subalgebra of A generated by f, i.e.,

$$B = \overline{\operatorname{span}}\{1, f, f^2, f^3, \dots\}.$$

Compute and compare $\sigma_A(f)$ and $\sigma_B(f)$.

Problem 26. Let A be a unital Banach algebra and let $x \in A$ be such that $x^n = o$ for some $n \in \mathbb{N}$. Determine $\sigma(x)$ and compute the resolvent function.

Problem 27. Let A be a unital Banach algebra and let $x \in A$ be such that $x^2 = x$. Determine $\sigma(x)$ and compute the resolvent function.

Hint: Distinguish three cases: $x = \mathbf{o}$, x = e and $x \notin \{\mathbf{o}, e\}$. The inverse of $\lambda e - x$ find in the form $\alpha e + \beta x$ for suitable $\alpha, \beta \in \mathbb{C}$.

Problem 28. Let A be a unital Banach algebra and let $x \in A$ be such that $x^3 = x$. Determine $\sigma(x)$ and compute the resolvent function.

Hint: There are several cases to be distinguished: The case $x^2 = x$ is covered by Problem 27. The case $x^2 = -x$ can be solved similarly as Problem 27. The next case to be solved is $x^2 = e$. Finally, if $x^2 \notin \{e, x, -x\}$, then show that e, x, x^2 are linearly independent and find the inverse of $\lambda e - x$ as a linear combination of e, x, x^2 .

Problem 29. Let $A = \ell^1(\mathbb{Z})$ (cf. Problem 12) and $n \in \mathbb{Z}$, $n \neq 0$. Show that $\sigma(e_n) = \mathbb{T}$ (where e_n is the respective canonical vector) and that

$$R(\lambda, \boldsymbol{e}_n) = \begin{cases} \sum_{k=0}^{\infty} \frac{\boldsymbol{e}_{kn}}{\lambda^{k+1}}, & |\lambda| > 1, \\ \sum_{k=1}^{\infty} -\lambda^k \boldsymbol{e}_{-kn}, & |\lambda| < 1. \end{cases}$$

Hint: This can be proved directly by solving the equation $(\lambda e_0 - e_n) * f = e_0$. One can also use the formula from Proposition IV.8(v) and its modifications.

PROBLEMS TO SECTION IV.3 – HOLOMORPHIC FUNCTIONAL CALCULUS

Problem 30. Let A be a unital Banach algebra and let f be an entire function. Let

$$f(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n, \qquad \lambda \in \mathbb{C},$$

be its Taylor expansion. Show that for each $x \in A$ we have

$$\tilde{f}(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Hint: Since f is an entire function, in the formula defining the holomorphic calkulus we may integrate along a circle centered at zero with a sufficiently large radius.

Problem 31. Let $A = M_n$ and $D \in A$ be a diagonal matrix, with values d_1, \ldots, d_n on the diagonal.

- (1) Show that $\sigma(D) = \{d_1, \ldots, d_n\}$ and compute the resolvent function.
- (2) Let f be a function holomorphic on a neighborhood of $\sigma(D)$. Show that f(D) is the diagonal matrix with values $f(d_1), \ldots, f(d_n)$ on the diagonal.
- (3) Deduce that in this case the value of $\tilde{f}(D)$ depends only on $f|_{\sigma(D)}$.

Hint: (2) Consider a cycle consisting of sufficiently small circles with centers d_1, \ldots, d_n and use the Cauchy formula for a disc.

Problem 32. Let $A = M_n$ where $n \ge 2$ and let $J \in A$ be a Jordan cell, with the value z on the diagonal, i.e.,

$$J = \begin{pmatrix} z & 1 & 0 & \dots & 0 & 0 \\ 0 & z & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & z & 1 \\ 0 & 0 & 0 & \dots & 0 & z \end{pmatrix}.$$

(1) Show that $\sigma(J) = \{z\}.$

(2) Show that

$$(\lambda I - J)^{-1} = \begin{pmatrix} \frac{1}{\lambda - z} & \frac{1}{(\lambda - z)^2} & \cdots & \frac{1}{(\lambda - z)^n} \\ 0 & \frac{1}{\lambda - z} & \cdots & \frac{1}{(\lambda - z)^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda - z} \end{pmatrix} \quad \text{for } \lambda \in \mathbb{C} \setminus \{z\}$$

(3) Let f be a function holomorphic on a neighborhood of z. Show that

$$\tilde{f}(J) = \begin{pmatrix} f(z) & f'(z) & \frac{f''(z)}{2} & \dots & \frac{f^{(n-1)}(z)}{(n-1)!} \\ 0 & f(z) & f'(z) & \dots & \frac{f^{(n-2)}(z)}{(n-2)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & f(z) \end{pmatrix}$$

(4) Deduce that in this case the value of $\tilde{f}(J)$ is not determined by $f|_{\sigma(J)}$.

Hint: (2) Consider a sufficiently small circle with center a and use the Cauchy formula for higher derivatives.

Problem 33. Let $A = M_n$ and $E \in A$ be an arbitrary matrix. Let f be a function holomorphic on a neighborhood of $\sigma(E)$.

- (1) Express f(E) using the Jordan canonical form of E.
- (2) Characterize those matrices E for which f(E) is determined by $f|_{\sigma(E)}$.

Problem 34. Let $A = \ell^1(\mathbb{Z}_2)$ or $A = \ell_1(\mathbb{Z}_3)$. For $x \in A$ and f holomorphic on a neighborhood of $\sigma(x)$ compute the value of $\tilde{f}(x)$.

Problem 35. Let A be a unital Banach algebra and $x \in A$ be an element satisfying one of the following conditions:

- (1) $x^n = 0$ for some $n \in \mathbb{N}$;
- (2) $x^2 = x;$
- (3) $x^2 = -x;$
- (4) $x^2 = e;$
- (5) $x^3 = x$, but none of the conditions (2)–(4) holds.

Let f be a function holomorphic on a neighborhood of $\sigma(x)$. Compute $\tilde{f}(x)$. In which cases it is determined by $f|_{\sigma(x)}$?

Problem 36. Let $A = \mathcal{C}(K)$, let $g \in A$ and let F be a function holomorphic on a neighborhood of $\sigma(g) = g(K)$. Show that $\tilde{F}(g) = F \circ g$.

Problem 37. Let $A = \ell^1(\mathbb{Z})$ (cf. Problem 12) and $n \in \mathbb{Z}$, $n \neq 0$. By Problem 29 we know that $\sigma(e_n) = \mathbb{T}$. Let g be a function holomorphic on a neighborhood of \mathbb{T} . Show that

$$\tilde{g}(\boldsymbol{e}_n) = \sum_{k \in \mathbb{Z}} a_k e_{kn},$$

where $(a_k)_{k\in\mathbb{Z}}$ are the coefficients of the Laurent expansion of g in a neighborhood of \mathbb{T} .

Hint: One can use either the definitions and the formula from Problem 29, or one can prove an analogue of the statement in Problem 30 for Laurent series.

PROBLEMS TO SECTION IV.4 – IDEALS, MULTIPLICATIVE FUNCTIONALS AND THE GELFAND TRANSFORM

Problem 38. Let $A = \mathcal{C}(K)$.

(1) Let I be a proper closed ideal v A. Show that there exists a nonempty closed set $F \subset K$ such that

$$I = \{ f \in \mathcal{C}(K); f|_F = 0 \}.$$

(2) Show that maximal ideals in A are exactly subspaces of the form

$$I = \{ f \in \mathcal{C}(K); f(x) = 0 \},\$$

where $x \in K$.

- (3) Deduce that the multiplicative functionals on A are exactly the functionals of the form $f \mapsto f(x)$, where $x \in K$.
- (4) Explain and prove the statement, that the Gelfand transform of the algebra A is the identity mapping.

Hint: (1) Set $F = \{x \in K; \forall f \in I : f(x) = 0\}$. Show that $F \neq \emptyset$ (otherwise using compactness and the definition of an ideal show that $1 \in I$). Similarly show that for each closed set H disjoint with F there exists a nonnegative $f \in I$ strictly positive on H. Using the Tietze theorem and definition of an ideal further show that there exists $g \in I$ with values in [0,1] which equals 1 on H. Finally deduce that any function which is zero on F may be approximated by functions from I.

Problem 39. Let $A = M_n$, where $n \ge 2$. Show that the only proper two-sided ideal in A is the zero ideal.

Hint: Assume that I is a nonzero ideal. Show that it contains at least one matrix with exacly one nonzero entry, then deduce that it contains all such matrices.

Problem 40. Let $A = \ell^1(G)$, where (G, +) is a commutative group (see Problem 12). Recall that then $A^* = \ell^{\infty}(G)$. Show that $\varphi \in \ell^{\infty}(G)$ belongs to $\Delta(A)$ if and only if it is a group homomorphism to the unit circle (i.e., $\varphi : G \to \mathbb{T}$ and $\varphi(g_1 + g_2) = \varphi(g_1)\varphi(g_2)$ for $g_1, g_2 \in G$.

Hint: Observe that $e_{g_1} * e_{g_2} = e_{g_1+g_2}$. To show that the values belong to \mathbb{T} use boundedness of φ and group operations.

Problem 41. Let $A = \ell^1(\mathbb{Z})$.

- (1) Describe $\Delta(A)$ and explain how to understand the equality $\Delta(A) = \mathbb{T}$.
- (2) Describe the Gelfand transform of A and (using it) express the spectrum of a general element of A.
- (3) Is the Gelfand transform one-to-one? If yes, what is its inverse?
- (4) What is the range of the Gelfand transform? Is it onto?

Hint: (1) Use Problem 40 and consider the mapping $\Delta(A) \ni \varphi \mapsto \varphi(1)$. (3) Use the knowledge of Fourier series. (4) Not every continuous function has an absolutely convergent Fourier series.

Problem 42. Let $A = \ell^1(\mathbb{Z}_n)$, where $n \in \mathbb{N}$, $n \geq 2$.

- (1) Describe $\Delta(A)$ and show that it has exactly *n* elements.
- (2) Describe the Gelfand transform A and (using it) express the spectrum of a general element of A.
- (3) Is the Gelfand transform one-to-one? If yes, what is its inverse?
- (4) What is the range of the Gelfand transform? Is it onto?

Hint: (1) Use Problem 40 and consider the mapping $\Delta(A) \ni \varphi \mapsto \varphi(1)$. (3,4) Use (among others) properties of finite-dimensional spaces.

Problem 43. Let $A = L^1(\mathbb{R}^n)$ (se Problem 14). Recall that $A^* = L^{\infty}(\mathbb{R}^n)$. Moreover,

 $\Delta(A) = \{ \varphi : \mathbb{R}^n \to \mathbb{T}; \varphi \text{ is continuous and } \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n : \varphi(\boldsymbol{x} + \boldsymbol{y}) = \varphi(\boldsymbol{x}) \cdot \varphi(\boldsymbol{y}) \},\$

which is a nontrivial known fact.

- (1) Show that the elements $\Delta(A)$ are exactly the functions $\boldsymbol{x} \mapsto e^{i\langle \boldsymbol{x}, \boldsymbol{y} \rangle}$, where $\boldsymbol{y} \in \mathbb{R}^n$.
- (2) Explain what the equality $\Delta(A) = \mathbb{R}^n$ means.
- (3) Describe the Gelfand transform of A and explain its relationship to the Fourier transform.

Problem 44. Consider \mathbb{T} as a compact group (the operation is the multiplication), i.e., $\mathbb{T} = \{e^{it}; t \in [0, 2\pi)\} = \{e^{it}; t \in \mathbb{R}\}$. Let $A = L^1(\mathbb{T})$ be equipped with the standard norm and the convolution as a multiplication, i.e.,

$$\|f\| = \frac{1}{\pi} \int_0^{2\pi} |f(e^{it})| \, \mathrm{d}t, \quad (f * g)(e^{it}) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{is})g(e^{i(t-s)}) \, \mathrm{d}s.$$

- (1) Show that A is a commutative Banach algebra with no unit.
- (2) Using the representation $A^* = L^{\infty}(\mathbb{T})$ and the known nontrivial fact that

 $\Delta(A) = \{ \varphi : \mathbb{T} \to \mathbb{T}; \varphi \text{ is continuous and } \forall x, y \in \mathbb{T} : \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) \},\$

show that the elements $\Delta(A)$ are exactly the functions $x \mapsto x^n$ for $n \in \mathbb{Z}$ (resp. $e^{it} \mapsto e^{int}$).

- (3) Explain what the equality $\Delta(A) = \mathbb{Z}$ means.
- (4) Describe the Gelfand transform of A and explain its relationship to the Fourier series.

Hint: (1) Show that it is just a different description of the algebra from Problem 15.

Problem 45. Let A be a unital commutative Banach algebra of finite dimension. Show that for each $x \in A$ its spectrum $\sigma(x)$ is a finite set with at most dim A elements.

Hint: Let $x \in A$. It follows that there exists $k \leq n$, such that the element x^k is a linear combination of the elements $1, x, \ldots, x^{k-1}$. Hence, for any $\varphi \in \Delta(A)$ the value $\varphi(x)$ must be a root of a certain polynomial of degree k. Moreover, $\sigma(x) = \{\varphi(x); \varphi \in \Delta(A)\}$ (see Theorem IV.24(e)).

Problems to sections IV.5 a IV.6 – C^* -algebras and the continuous function calculus

Problem 46. Show that the Banach algebra $\ell^1(\mathbb{Z})$ (see Problem 12) admits no involution making it a C^* -algebra.

Hint: Consider the Gelfand transform (see Problem 41) and show that its range is a proper dense subspace of $\mathcal{C}(\mathbb{T})$. Then use Theorem IV.33.

Problem 47. Show that the Banach algebra $L^1(\mathbb{R})$ (see Problem 14) admits no involution making it a C^* -algebra.

Hint: Consider the Gelfand transform and its relationship to the Fourier transform (see Problem 43), use the known fact, that the Fourier transform is not onto $C_0(\mathbb{R}^n)$ and Theorem IV.33.

Problem 48. Let $A = \mathcal{C}(K)$, let $g \in A$ and let F be a function continuous on $\sigma(g) = g(K)$. Show that $\tilde{F}(g) = F \circ g$.

Problem 49. (1) Let A be a commutative C^* -algebra and $x \in A$. Show that x is self-adjoint if and only if $\sigma(x) \subset \mathbb{R}$.

(2) Is this equivalence valid also for non-commutative C^* -algebras?

Hint: (1) For \Rightarrow use Proposition IV.32. For the converse note that the statement is valid in $C_0(T)$ and use Theorem IV.33. (2) Find a counterxample to \Leftarrow in the matrix algebra M_2 .

Problem 50. Let A be a C^{*}-algebra. An element $x \in A$ is called **positive** if it is self-adjoint and $\sigma(x) \subset [0, +\infty)$.

Show that each self-adjoint element may be expressed as a difference of two positive elements.

Hint: Use the continuous function calculus for functions $t \mapsto t^+$ and $t \mapsto t^-$.

Problem 51. Let A be a unital C^{*}-algebra, $x \in A$ a normal element and $f \in \mathcal{C}(\sigma(x))$.

- (1) Show that f(x) is a normal element.
- (2) Show that f(x) is a self-adjoint element if and only if the function f attains only real values.
- (3) Show that f(x) is a positive element if and only if the function f attains only non-negative values.
- (4) Show that f(x) is an invertible element if and only if the function f does not attain the value 0.

Problem 52. Let A be a C^{*}-algebra and let $x, y \in A$ be two positive elements which commute (i.e., xy = yx). Show that xy is a positive element as well.

Hint: Let B be a closed subalgebra of A generated by x and y. Then B is a commutative C^* -algebra. Use Theorem IV.33 and the fact that the statement is valid in $\mathcal{C}_0(\Omega)$.

Problem 53. Let A be a C^* -algebra with a unit e and let $x \in A$ be a normal element. Denote by B the closed subalgebra of A generates by the elements x, x^*, e and by B_0 the closed subalgebra of A generates by the elements x, x^* .

- (1) Show that $B = B_0$ if and only if x is invertible in A.
- (2) Let $f \in \mathcal{C}(\sigma(x))$. Show that $\tilde{f}(x) \in B$.
- (3) Let $f \in \mathcal{C}(\sigma(x))$. Show that $\tilde{f}(x) \in B_0$ if and only if either x is invertible or f(0) = 0.

Hint: (1) The implication \Leftarrow is obvious. If x is not invertible, deduce from Theorem IV.39 that B_0 does not contain e. (2) Use Theorem IV.38. (3) The implication \Leftarrow follows from (1) and Theorem IV.39. Assum that x is not invertible (i.e., $0 \in \sigma(x)$) and $f(0) \neq 0$. Since the function calculus is an isomorphism of $C(\sigma(x))$ onto B and simultaneously an isomorphism of $C_0(\sigma(x) \setminus \{0\})$ onto B_0 , it is enough to observe that $f \notin C_0(\sigma(x) \setminus \{0\})$. **Problem 54.** Consider the situation from Problem 53 and, moreover, fix $f \in C(\sigma(x))$. Denote by D the closed subalgebra of A generates by the elements $\tilde{f}(x), \tilde{f}(x)^*, e$ and by D_0 the closed subalgebra of A generates by the elements $\tilde{f}(x), \tilde{f}(x)^*$.

- (1) Show that $D \subset B$ and $D_0 \subset B_0$.
- (2) Show that $D = D_0$ if and only if f does not attain the value zero.
- (3) Consider the diagram

where $r(\varphi) = \varphi|_D$ for $\varphi \in \Delta(B)$ and h_x and $h_{\tilde{f}(x)}$ are the mapping from the construction of the continuous calculus in Theorem IV.38, i.e., $h_x(\varphi) = \varphi(x)$ and $h_{\tilde{f}(x)}(\psi) = \psi(\tilde{f}(x))$. Show that this diagram commutes, i.e., $f \circ h_x = h_{\tilde{f}(x)} \circ r$.

(4) Deduce that for each $g \in \mathcal{C}(\sigma(\tilde{f}(x)))$ we have $\tilde{g}(\tilde{f}(x)) = \widetilde{g \circ f}(x)$.

Hint: (2) Use Problem 53(1). (3) It is necessary to show that $\varphi(\tilde{f}(x)) = f(\varphi(x))$. To this end use the definition of the continuous function calculus and the definition of the Gelfand transform. (4) Use (3) and the definition of the continuous function calculus.

Problem 55. Let A be a C^* -algebra and let $x \in A$ be a positive element.

- (1) Show that there exists a positive element $y \in A$ such that $y^2 = x$.
- (2) Is such y unique?

Hint: (1) Use the continuous calculus for the function $t \mapsto \sqrt{t}$ to the element x. (2) Let z be a positive element satisfying $z^2 = x$ and let y be the element obtain by the way described in (1). Using Problem 54(4) applied to $f(t) = t^2$ and $g(t) = \sqrt{t}$ show that z = y.