VII. Elements of the theory of distributions VII.1 Space of test functions and weak derivatives

Notation (reminder from Chapter IV):

- $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \dots\}$
- Elements of \mathbb{N}_0^d are called **multiindices**. For $\alpha \in \mathbb{N}_0^d$ we set
- $|\alpha| = \alpha_1 + \cdots + \alpha_d$. This number is called the order of the multiindex α .
- If $\Omega \subset \mathbb{R}^d$ is an open set, $f \in \mathcal{C}^{\infty}(\Omega, \mathbb{F})$ and $a \in \Omega$, we set

$$D^{\alpha}f(\boldsymbol{a}) = rac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\dots\partial x_d^{\alpha_d}}(\boldsymbol{a}).$$

Definition. Let $d \in \mathbb{N}$ and let $\Omega \subset \mathbb{R}^d$ be an open set.

(a) If $f: \Omega \to \mathbb{F}$ is continuous, its **support** is the set

spt
$$f = \overline{\{\boldsymbol{x} \in \Omega; f(\boldsymbol{x}) \neq 0\}},$$

where the closure is taken in Ω .

(b) Let

 $\mathscr{D}(\Omega, \mathbb{F}) = \{ f \in \mathcal{C}^{\infty}(\Omega, \mathbb{F}); \text{spt } f \text{ is a compact subset } \Omega \}.$

Elements of $\mathscr{D}(\Omega, \mathbb{F})$ are called **test functions**, the space $\mathscr{D}(\Omega, \mathbb{F})$ is called **the space of test functions**.

- (c) A measurable function $f: \Omega \to \mathbb{F}$ is called **locally integrable in** Ω , if for any $\boldsymbol{x} \in \Omega$ there exists r > 0 such that f is Lebesgue integrable on $U(\boldsymbol{x}, r)$ (i.e., $\int_{U(\boldsymbol{x},r)} |f| < \infty$). The space of all locally integrable functions in Ω is denoted by $L^{1}_{loc}(\Omega, \mathbb{F})$. (More precisely, it is the space of all equivalence classes, where we identify functions equal almost everywhere.)
- (d) Choose a non-negative $h \in \mathscr{D}(\mathbb{R}^d)$ such that $\operatorname{spt} \varphi \subset U(0,1)$ and $\int_{\mathbb{R}^d} h = 1$. For $j \in \mathbb{N}$ we define a function h_j by

$$h_j(\boldsymbol{x}) = j^d h(j\boldsymbol{x}) \text{ for } \boldsymbol{x} \in \mathbb{R}^d.$$

The sequence (h_j) , obtained in this way is called an **approximate unit** in $\mathscr{D}(\mathbb{R}^d)$ or a **smoothing kernel**.

Lemma 1. Let $\Omega \subset \mathbb{R}^d$ be open. Then $\mathscr{D}(\Omega)$ is a dense subspace of $L^p(\Omega)$ for any $p \in [1, \infty)$.

Lemma 2. Let $\Omega \subset \mathbb{R}^d$ be an open set.

- Let μ be a (finite) signed or complex regular Borel measure on Ω . If $\int_{\Omega} \varphi \, d\mu = 0$ for any $\varphi \in \mathscr{D}(\Omega)$, then $\mu = 0$.
- Let $f \in L^1_{loc}(\Omega)$ and $\int_{\Omega} f\varphi = 0$ for any $\varphi \in \mathscr{D}(\Omega)$. Then f = 0 almost everywhere on Ω .

Definition. Let $(a, b) \subset \mathbb{R}$ be an open interval an let $f \in L^1_{loc}((a, b))$.

• A function $g \in L^1_{loc}((a, b))$ is called a weak derivative of a function f, if for any $\varphi \in \mathscr{D}((a, b))$ we have

$$\int_{a}^{b} f\varphi' = -\int_{a}^{b} g\varphi.$$

• Let μ be a finite regular Borel measure on (a, b) (signed or complex). The measure μ is said to be a **weak derivative** of a function f, if for any $\varphi \in \mathscr{D}((a, b))$ we have

$$\int_{a}^{b} f\varphi' = -\int_{(a,b)} \varphi \,\mathrm{d}\mu.$$

Proposition 3. Let $(a,b) \subset \mathbb{R}$ be an open interval and let $f \in L^1_{loc}((a,b))$. If $\int_a^b f\varphi' = 0$ for any $\varphi \in \mathscr{D}((a,b))$, the function f is constant (i.e., there exists a constant c such that f = c almost everywhere on (a,b)).

In other words: If the zero function is a weak derivative of a function $f \in L^1_{loc}((a, b))$, the function f is constant (in the above-mentioned sense).

Theorem 4. Let $f \in L^1_{loc}((a, b))$.

- (a) The weak derivative of f is uniquely determined. I.e., if two functions $g_1, g_2 \in L^1_{loc}((a, b))$ are weak derivatives of a function f, then $g_1 = g_2$ almost everywhere. Similarly, if two measures μ_1, μ_2 are weak derivatives of a function f, then $\mu_1 = \mu_2$.
- (b) If f is absolutely continuous on [a, b], it has a finite derivative almost everywhere, f' ∈ L¹((a, b)) and f' is the weak derivative of f. Conversely, if a function f has a weak derivative g ∈ L¹((a, b)), there exists a function f₀ absolutely continuous on [a, b], equal to f almost everywhere on (a, b). In this case g = f'₀ almost everywhere. More generally, a function f has a weak derivative in L¹_{loc}((a, b)) if and only if there exists function f₀ locally absolutely continuous on (a, b) (i.e., absolutely continuous on each closed subinterval [c, d] ⊂ (a, b)) such that f₀ = f almost everywhere.
- (c) There exists a finite measure μ , which is a weak derivative of function f if and only if there exists a function f_0 of bounded variation on [a, b] such that $f_0 = f$ almost everywhere on (a, b). In this case for each subinterval $(c, d) \subset (a, b)$ we have

$$\mu((c,d)) = \lim_{x \to d-} f_0(x) - \lim_{x \to c+} f_0(x).$$

Moreover, μ is real-valued if and only if f_0 may be real-valued and μ is non-negative if and only if f_0 may be non-increasing.