VII. Elements of the theory of distributions
VII.1 Space of test functions and weak derivatives

Notation (reminder from Chapter IV):
e Ny =NuU{0}=1{0,1,2,3, ...}
e Elements of N¢ are called multiindices. For o € N¢ we set
|| = a3 + -+ + ag4. This number is called the order of the multiindex «.
o If O C R is an open set, f € C>°(Q,F) and a € Q, we set
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Definition. Let d € N and let  C R? be an open set.

(a) If f:Q — F is continuous, its support is the set

spt f = {w € ©; [(@) £ 0},
where the closure is taken in ).
(b) Let
(0, F) ={f € C*(Q,F);spt f is a compact subset 2}.
Elements of 2(£2,F) are called test functions, the space (€2, F) is called
the space of test functions.
(c) A measurable function f : 0 — T is called locally integrable in €, if for any
x € (Q there exists r > 0 such that f is Lebesgue integrable on U(x,r)
(i.e., fU(w’r) | f| < c0). The space of all locally integrable functions in €2 is

denoted by Li (Q,F). (More precisely, it is the space of all equivalence
classes, where we identify functions equal almost everywhere.)
(d) Choose a non-negative h € Z(R?) such that spty C U(0,1) and

Jga h = 1. For j € N we define a function h; by
hi(x) = j*h(jz) for € R%.

The sequence (h;), obtained in this way is called an approximate unit in
2(R%) or a smoothing kernel.

Lemma 1. Let Q C R? be open. Then 9(f) is a dense subspace of LP(f2)
for any p € [1, 00).

Lemma 2. Let Q C R? be an open set.

e Let p be a (finite) signed or complex regular Borel measure on ). If
Jopdu =0 for any ¢ € 2(), then = 0.

e Let f € L. (Q) and [, fo =0 for any ¢ € Z(Q). Then f = 0 almost
everywhere on (.



Definition. Let (a,b) C R be an open interval an let f € Li _((a,b)).

A function g € Li ((a,b)) is called a weak derivative of a function f, if
for any ¢ € %((a,b)) we have
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Let 1 be a finite regular Borel measure on (a,b) (signed or complex).
The measure u is said to be a weak derivative of a function f, if for any
v € Y((a,b)) we have
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Proposition 3.  Let (a,b) C R be an open interval and let f € L ((a,b)).

If f; fe' =0 for any p € Y((a,b)), the function f is constant (i.e., there exists
a constant c¢ such that f = ¢ almost everywhere on (a,b)).

In other words: If the zero function is a weak derivative of a function
f € L .((a,b)), the function f is constant (in the above-mentioned sense).

Theorem 4. Let f € L ((a,b)).

(a)

(b)

The weak derivative of f is uniquely determined. Ie., if two functions
91,92 € Li .((a,b)) are weak derivatives of a function f, then g; = go
almost everywhere. Similarly, if two measures i1, p1o are weak derivatives
of a function f, then pu, = po.
If f is absolutely continuous on [a,b], it has a finite derivative almost
everywhere, f' € L'((a,b)) and f’ is the weak derivative of f.
Conversely, if a function f has a weak derivative g € L'((a,b)), there
exists a function fy absolutely continuous on [a,b|, equal to f almost
everywhere on (a,b). In this case g = f} almost everywhere.
More generally, a function f has a weak derivative in L _((a,b)) if and
only if there exists function fy locally absolutely continuous on (a, b) (i.e.,
absolutely continuous on each closed subinterval [c,d] C (a,b)) such that
fo = f almost everywhere.
There exists a finite measure p, which is a weak derivative of function f
if and only if there exists a function fy of bounded variation on |a, b] such
that fo = f almost everywhere on (a,b). In this case for each subinterval
(¢,d) C (a,b) we have

pl(e.d)) = lim fo(x) — lim_fo(a).

Moreover, u is real-valued if and only if fo may be real-valued and p is
non-negative if and only if fy may be non-increasing.



