
VII. Elements of the theory of distributions

VII.1 Space of test functions and weak derivatives

Notation (reminder from Chapter IV):

• N0 = N ∪ {0} = {0, 1, 2, 3, . . . }
• Elements of Nd

0 are called multiindices. For α ∈ N
d
0 we set

|α| = α1 + · · ·+ αd. This number is called the order of the multiindex α.
• If Ω ⊂ R

d is an open set, f ∈ C∞(Ω,F) and a ∈ Ω, we set

Dαf(a) =
∂|α|f

∂xα1
1 . . . ∂xαd

d

(a).

Definition. Let d ∈ N and let Ω ⊂ R
d be an open set.

(a) If f : Ω→ F is continuous, its support is the set

spt f = {x ∈ Ω; f(x) 6= 0},
where the closure is taken in Ω.

(b) Let
D(Ω,F) = {f ∈ C∞(Ω,F); spt f is a compact subset Ω}.

Elements of D(Ω,F) are called test functions, the space D(Ω,F) is called
the space of test functions.

(c) A measurable function f : Ω→ F is called locally integrable in Ω, if for any
x ∈ Ω there exists r > 0 such that f is Lebesgue integrable on U(x, r)
(i.e.,

∫
U(x,r)

|f | < ∞). The space of all locally integrable functions in Ω is

denoted by L1loc(Ω,F). (More precisely, it is the space of all equivalence
classes, where we identify functions equal almost everywhere.)

(d) Choose a non-negative h ∈ D(Rd) such that sptϕ ⊂ U(0, 1) and∫
Rd h = 1. For j ∈ N we define a function hj by

hj(x) = jdh(jx) for x ∈ R
d.

The sequence (hj), obtained in this way is called an approximate unit in
D(Rd) or a smoothing kernel.

Lemma 1. Let Ω ⊂ R
d be open. Then D(Ω) is a dense subspace of Lp(Ω)

for any p ∈ [1,∞).

Lemma 2. Let Ω ⊂ R
d be an open set.

• Let µ be a (finite) signed or complex regular Borel measure on Ω. If∫
Ω
ϕdµ = 0 for any ϕ ∈ D(Ω), then µ = 0.

• Let f ∈ L1loc(Ω) and
∫
Ω
fϕ = 0 for any ϕ ∈ D(Ω). Then f = 0 almost

everywhere on Ω.



Definition. Let (a, b) ⊂ R be an open interval an let f ∈ L1loc((a, b)).

• A function g ∈ L1loc((a, b)) is called a weak derivative of a function f , if
for any ϕ ∈ D((a, b)) we have∫ b

a

fϕ′ = −

∫ b

a

gϕ.

• Let µ be a finite regular Borel measure on (a, b) (signed or complex).
The measure µ is said to be a weak derivative of a function f , if for any
ϕ ∈ D((a, b)) we have∫ b

a

fϕ′ = −

∫
(a,b)

ϕdµ.

Proposition 3. Let (a, b) ⊂ R be an open interval and let f ∈ L1loc((a, b)).

If
∫ b

a
fϕ′ = 0 for any ϕ ∈ D((a, b)), the function f is constant (i.e., there exists

a constant c such that f = c almost everywhere on (a, b)).
In other words: If the zero function is a weak derivative of a function

f ∈ L1loc((a, b)), the function f is constant (in the above-mentioned sense).

Theorem 4. Let f ∈ L1loc((a, b)).

(a) The weak derivative of f is uniquely determined. I.e., if two functions
g1, g2 ∈ L1loc((a, b)) are weak derivatives of a function f , then g1 = g2
almost everywhere. Similarly, if two measures µ1, µ2 are weak derivatives
of a function f , then µ1 = µ2.

(b) If f is absolutely continuous on [a, b], it has a finite derivative almost
everywhere, f ′ ∈ L1((a, b)) and f ′ is the weak derivative of f .
Conversely, if a function f has a weak derivative g ∈ L1((a, b)), there
exists a function f0 absolutely continuous on [a, b], equal to f almost
everywhere on (a, b). In this case g = f ′

0 almost everywhere.
More generally, a function f has a weak derivative in L1loc((a, b)) if and
only if there exists function f0 locally absolutely continuous on (a, b) (i.e.,
absolutely continuous on each closed subinterval [c, d] ⊂ (a, b)) such that
f0 = f almost everywhere.

(c) There exists a finite measure µ, which is a weak derivative of function f
if and only if there exists a function f0 of bounded variation on [a, b] such
that f0 = f almost everywhere on (a, b). In this case for each subinterval
(c, d) ⊂ (a, b) we have

µ((c, d)) = lim
x→d−

f0(x)− lim
x→c+

f0(x).

Moreover, µ is real-valued if and only if f0 may be real-valued and µ is
non-negative if and only if f0 may be non-increasing.


