VII. Elements of the theory of distributions VII. 1 Space of test functions and weak derivatives

Notation (reminder from Chapter IV):

- $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2,3, \ldots\}$
- Elements of \mathbb{N}_{0}^{d} are called multiindices. For $\alpha \in \mathbb{N}_{0}^{d}$ we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$. This number is called the order of the multiindex α.
- If $\Omega \subset \mathbb{R}^{d}$ is an open set, $f \in \mathcal{C}^{\infty}(\Omega, \mathbb{F})$ and $\boldsymbol{a} \in \Omega$, we set

$$
D^{\alpha} f(\boldsymbol{a})=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}}(\boldsymbol{a})
$$

Definition. Let $d \in \mathbb{N}$ and let $\Omega \subset \mathbb{R}^{d}$ be an open set.
(a) If $f: \Omega \rightarrow \mathbb{F}$ is continuous, its support is the set

$$
\operatorname{spt} f=\overline{\{\boldsymbol{x} \in \Omega ; f(\boldsymbol{x}) \neq 0\}},
$$

where the closure is taken in Ω.
(b) Let

$$
\mathscr{D}(\Omega, \mathbb{F})=\left\{f \in \mathcal{C}^{\infty}(\Omega, \mathbb{F}) ; \operatorname{spt} f \text { is a compact subset } \Omega\right\} .
$$

Elements of $\mathscr{D}(\Omega, \mathbb{F})$ are called test functions, the space $\mathscr{D}(\Omega, \mathbb{F})$ is called the space of test functions.
(c) A measurable function $f: \Omega \rightarrow \mathbb{F}$ is called locally integrable in Ω, if for any $\boldsymbol{x} \in \Omega$ there exists $r>0$ such that f is Lebesgue integrable on $U(\boldsymbol{x}, r)$ (i.e., $\left.\int_{U(x, r)}|f|<\infty\right)$. The space of all locally integrable functions in Ω is denoted by $L_{\text {loc }}^{1}(\Omega, \mathbb{F})$. (More precisely, it is the space of all equivalence classes, where we identify functions equal almost everywhere.)
(d) Choose a non-negative $h \in \mathscr{D}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{spt} \varphi \subset U(0,1)$ and $\int_{\mathbb{R}^{d}} h=1$. For $j \in \mathbb{N}$ we define a function h_{j} by

$$
h_{j}(\boldsymbol{x})=j^{d} h(j \boldsymbol{x}) \text { for } \boldsymbol{x} \in \mathbb{R}^{d} .
$$

The sequence $\left(h_{j}\right)$, obtained in this way is called an approximate unit in $\mathscr{D}\left(\mathbb{R}^{d}\right)$ or a smoothing kernel.

Lemma 1. Let $\Omega \subset \mathbb{R}^{d}$ be open. Then $\mathscr{D}(\Omega)$ is a dense subspace of $L^{p}(\Omega)$ for any $p \in[1, \infty)$.
Lemma 2. Let $\Omega \subset \mathbb{R}^{d}$ be an open set.

- Let μ be a (finite) signed or complex regular Borel measure on Ω. If $\int_{\Omega} \varphi \mathrm{d} \mu=0$ for any $\varphi \in \mathscr{D}(\Omega)$, then $\mu=0$.
- Let $f \in L_{\text {loc }}^{1}(\Omega)$ and $\int_{\Omega} f \varphi=0$ for any $\varphi \in \mathscr{D}(\Omega)$. Then $f=0$ almost everywhere on Ω.

Definition. Let $(a, b) \subset \mathbb{R}$ be an open interval an let $f \in L_{\text {loc }}^{1}((a, b))$.

- A function $g \in L_{\text {loc }}^{1}((a, b))$ is called a weak derivative of a function f, if for any $\varphi \in \mathscr{D}((a, b))$ we have

$$
\int_{a}^{b} f \varphi^{\prime}=-\int_{a}^{b} g \varphi .
$$

- Let μ be a finite regular Borel measure on (a, b) (signed or complex). The measure μ is said to be a weak derivative of a function f, if for any $\varphi \in \mathscr{D}((a, b))$ we have

$$
\int_{a}^{b} f \varphi^{\prime}=-\int_{(a, b)} \varphi \mathrm{d} \mu
$$

Proposition 3. Let $(a, b) \subset \mathbb{R}$ be an open interval and let $f \in L_{\mathrm{loc}}^{1}((a, b))$. If $\int_{a}^{b} f \varphi^{\prime}=0$ for any $\varphi \in \mathscr{D}((a, b))$, the function f is constant (i.e., there exists a constant c such that $f=c$ almost everywhere on (a, b)).

In other words: If the zero function is a weak derivative of a function $f \in L_{\text {loc }}^{1}((a, b))$, the function f is constant (in the above-mentioned sense).
Theorem 4. Let $f \in L_{\text {loc }}^{1}((a, b))$.
(a) The weak derivative of f is uniquely determined. I.e., if two functions $g_{1}, g_{2} \in L_{\text {loc }}^{1}((a, b))$ are weak derivatives of a function f, then $g_{1}=g_{2}$ almost everywhere. Similarly, if two measures μ_{1}, μ_{2} are weak derivatives of a function f, then $\mu_{1}=\mu_{2}$.
(b) If f is absolutely continuous on $[a, b]$, it has a finite derivative almost everywhere, $f^{\prime} \in L^{1}((a, b))$ and f^{\prime} is the weak derivative of f.
Conversely, if a function f has a weak derivative $g \in L^{1}((a, b))$, there exists a function f_{0} absolutely continuous on $[a, b]$, equal to f almost everywhere on (a, b). In this case $g=f_{0}^{\prime}$ almost everywhere.
More generally, a function f has a weak derivative in $L_{\text {loc }}^{1}((a, b))$ if and only if there exists function f_{0} locally absolutely continuous on (a, b) (i.e., absolutely continuous on each closed subinterval $[c, d] \subset(a, b))$ such that $f_{0}=f$ almost everywhere.
(c) There exists a finite measure μ, which is a weak derivative of function f if and only if there exists a function f_{0} of bounded variation on $[a, b]$ such that $f_{0}=f$ almost everywhere on (a, b). In this case for each subinterval $(c, d) \subset(a, b)$ we have

$$
\mu((c, d))=\lim _{x \rightarrow d-} f_{0}(x)-\lim _{x \rightarrow c+} f_{0}(x) .
$$

Moreover, μ is real-valued if and only if f_{0} may be real-valued and μ is non-negative if and only if f_{0} may be non-increasing.

