VII.3 A bit more on distributions

Definition. Let $\Omega \subset \mathbb{R}^d$ be an open set. We say that a sequence (Λ_n) in $\mathscr{D}'(\Omega)$ converges to a distribution Λ , if it converges pointwise on $\mathscr{D}(\Omega)$, i.e., if $\Lambda_n(\varphi) \to \Lambda(\varphi)$ for each $\varphi \in \mathscr{D}(\Omega)$.

Proposition 10 (on the convergence of distributions). Let $\Omega \subset \mathbb{R}^d$ be an open set. Then:

- (a) If (Λ_n) is a sequence on distributions on Ω which converges to a distribution Λ , then $\circ D^{\alpha}\Lambda_n \to D^{\alpha}\Lambda$ for each multiindex α ; $\circ f\Lambda_n \to f\Lambda$ for any $f \in \mathcal{C}^{\infty}(\Omega)$.
- (b) If (f_n) is a sequence in $L^1_{loc}(\Omega)$ converging in $L^1_{loc}(\Omega)$ to a function f, i.e.,

 $\int_{K} |f_n - f| \to 0 \text{ for any compact } K \subset \Omega,$

- (c) If $p \in [1, \infty]$ and (f_n) is a sequence in $L^p(\Omega)$ converging in $L^p(\Omega)$ to a function f, then $\Lambda_{f_n} \to \Lambda_f$.
- (d) If (φ_n) is a sequence in $\mathscr{D}(\Omega)$ converging in $\mathscr{D}(\Omega)$ to a function φ , then $\Lambda_{\varphi_n} \to \Lambda_{\varphi}$.

Theorem 11 (Banach-Steinhaus theorem for distribution). Let (Λ_n) be a sequence of distributions on Ω such that the sequence $(\Lambda_n(\varphi))$ converges for any $\varphi \in \mathscr{D}(\Omega)$. If we set $\Lambda(\varphi) = \lim_{n \to \infty} \Lambda_n(\varphi), \varphi \in \mathscr{D}(\Omega)$, then $\Lambda \in \mathscr{D}'(\Omega)$.

Definition. Let $\Omega \subset \mathbb{R}^d$ be an open set and let Λ be a distribution on Ω .

- Let $G \subset \Omega$ be open. A is said to vanish on G if $\Lambda(\varphi) = 0$ for any $\varphi \in \mathscr{D}(\Omega)$ such that $\operatorname{spt} \varphi \subset G$.
- The support of a distribution Λ is the set

then $\Lambda_{f_n} \to \Lambda_f$.

spt $\Lambda = \Omega \setminus \bigcup \{ G \subset \Omega \text{ open}; \Lambda \text{ vanishes on } G \}$

 $= \{ x \in \Omega; \forall \varepsilon > 0 \exists \varphi \in \mathscr{D}(\Omega) : \operatorname{spt} \varphi \subset U(x, \varepsilon) \& \Lambda(\varphi) \neq 0 \}$

• We say that Λ has compact support if spt Λ is a compact subset of Ω .

Proposition 12 (on the support of a distribution). Let $\Omega \subset \mathbb{R}^d$ be an open set and let Λ be a distribution on Ω . Then:

- (a) If $\Lambda = \Lambda_f$ for $f \in L^1_{loc}(\Omega)$, then spt $\Lambda = \text{spt } f$, where $\operatorname{spt} f = \{ \boldsymbol{x} \in \Omega; \lambda^d (\{ \boldsymbol{y} \in U(\boldsymbol{x}, \varepsilon); f(\boldsymbol{y}) \neq 0 \}) > 0 \text{ for each } \varepsilon > 0 \}.$
 - If f is continuous, this set coincides with spt f defined earlier.
- (b) If $\Lambda = \Lambda_{\mu}$ for a measure μ , then spt $\Lambda = \text{spt } \mu$, where spt $\mu = \Omega \setminus \{G \subset \Omega \text{ open}; \mu(A) = 0 \text{ for any } A \subset G \text{ Borel}\}.$
- (c) If $\varphi \in \mathscr{D}(\Omega)$ is such that spt $\varphi \cap \operatorname{spt} \Lambda = \emptyset$, then $\Lambda(\varphi) = 0$.
- (d) If Λ has compact support, then there exist $N \in \mathbb{N}_0$ and C > 0 such that $|\Lambda(\varphi)| \leq C \|\varphi\|_N$ for each $\varphi \in \mathscr{D}(\Omega)$.

In particular, Λ is of finite order.

(e) spt Λ is a singleton $\{p\}$ if and only if there exist $N \in \mathbb{N}_0$ and numbers $c_{\alpha}, \alpha \in \mathbb{N}_0^d$, $|\alpha| \leq N$, not all zero such that

$$\Lambda = \sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le N} c_\alpha D^\alpha \Lambda_{\delta_p},$$

i.e. there exist numbers $d_{\alpha}, \alpha \in \mathbb{N}_0^d, |\alpha| \leq N$, not all zero such that

$$\Lambda(\varphi) = \sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le N} d_{\alpha} D^{\alpha} \varphi(p), \quad \varphi \in \mathscr{D}(\Omega).$$