VII.4 Convolution of distributions

Notation. Let $M \subset \mathbb{R}^d$ and let $f : M \to \mathbb{F}$ be a function.

- For $\boldsymbol{y} \in \mathbb{R}^d$ we define a function $\tau_{\boldsymbol{y}} f$ (a translate of the function f) by the formula $(\tau_{\boldsymbol{u}}f)(\boldsymbol{x}) = f(\boldsymbol{x} - \boldsymbol{y}), \quad \boldsymbol{x} \in \boldsymbol{y} + M.$
- By the reflexion of f we mean the function \check{f} defined by the formula
- $\check{f}(\boldsymbol{x}) = f(-\boldsymbol{x}), \quad \boldsymbol{x} \in -M.$ For $\boldsymbol{a}, \boldsymbol{e} \in \mathbb{R}^d$ we define $\partial_{\boldsymbol{e}} f(\boldsymbol{a}) = \lim_{r \to 0} \frac{f(\boldsymbol{a} + r\boldsymbol{e}) f(\boldsymbol{a})}{r}$, if the limit exists. (If \boldsymbol{e} is a unit vector, it is a directional derivative of f at \boldsymbol{a} in the direction \boldsymbol{e} .)

Lemma 13. Let $\varphi \in \mathscr{D}(\mathbb{R}^d)$.

- (a) If $\boldsymbol{x}_n \to \boldsymbol{x}$ in \mathbb{R}^d , then $\tau_{\boldsymbol{x}_n} \varphi \to \tau_{\boldsymbol{x}} \varphi$ v $\mathscr{D}(\mathbb{R}^d)$.
- (b) Let $e \in \mathbb{R}^d$. Then $\partial_e \varphi \in \mathscr{D}(\mathbb{R}^d)$. Moreover, if we define the function φ_r for $r \in \mathbb{R} \setminus \{0\}$ by the formula

$$arphi_r(oldsymbol{x}) = rac{1}{r}(arphi(oldsymbol{x}+roldsymbol{e}) - arphi(oldsymbol{x})), \quad oldsymbol{x} \in \mathbb{R}^d, \ ext{i.e.}, \ arphi_r = rac{1}{r}(au_{-roldsymbol{e}}arphi - arphi), \ ext{then} \ arphi_r o \partial_{oldsymbol{e}}arphi \ ext{in} \ \mathscr{D}(\mathbb{R}^d) \ ext{for} \ r o 0$$

Let $d_1, d_2 \in \mathbb{N}$ and let $\varphi \in \mathscr{D}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2})$. Proposition 14.

- (a) Let $\Lambda \in \mathscr{D}'(\mathbb{R}^{d_1})$. For $\boldsymbol{y} \in \mathbb{R}^{d_2}$ we define $\psi(\boldsymbol{y}) = \Lambda(\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))$. Then $\psi \in \mathscr{D}(\mathbb{R}^{d_2})$ and for each multiindex $\alpha \in \mathbb{N}_0^{d_2}$ we have $D^{\alpha}\psi(\boldsymbol{y}) = \Lambda(\boldsymbol{x} \mapsto D^{(\boldsymbol{o},\alpha)}\varphi(\boldsymbol{x},\boldsymbol{y}))$ for $\boldsymbol{y} \in \mathbb{R}^{d_2}$.
- (b) (Fubini Theorem for distributions) Let $\Lambda_1 \in \mathscr{D}'(\mathbb{R}^{d_1})$ and $\Lambda_2 \in \mathscr{D}'(\mathbb{R}^{d_2})$. Then $\Lambda_2(\boldsymbol{y} \mapsto \Lambda_1(\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))) = \Lambda_1(\boldsymbol{x} \mapsto \Lambda_2(\boldsymbol{y} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))).$

Definition. Let U be a distribution on \mathbb{R}^d and let $\varphi \in \mathscr{D}(\mathbb{R}^d)$. The convolution of φ and U is the function $U * \varphi$ defined by the formula

$$* \, arphi(oldsymbol{x}) = U(au_{oldsymbol{x}}\check{arphi}) = U(oldsymbol{y}\mapstoarphi(oldsymbol{x}-oldsymbol{y})), \quad oldsymbol{x}\in\mathbb{R}^d.$$

Remark: Since $\tau_{\boldsymbol{x}}\check{\varphi} \in \mathscr{D}(\mathbb{R}^d)$ whenever $\boldsymbol{x} \in \mathbb{R}^d$ and $\varphi \in \mathscr{D}(\mathbb{R}^d)$, $U * \varphi$ is a well-defined function on \mathbb{R}^d .

Theorem 15 (on the convolution of a distribution and a test function). Let U be a distribution on \mathbb{R}^d and let $\varphi, \psi \in \mathscr{D}(\mathbb{R}^d)$. Then:

(a) If $f \in L^1_{\text{loc}}(\mathbb{R}^d)$, then $\Lambda_f * \varphi = f * \varphi$.

U

- (b) $U * \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ and for each multiindex α we have
 - $D^{\alpha}(U * \varphi) = (D^{\alpha}U) * \varphi = U * D^{\alpha}\varphi.$
- (c) $\operatorname{spt}(U * \varphi) \subset \operatorname{spt} U + \operatorname{spt} \varphi$. In particular, if U has compact support, then $U * \varphi \in \mathscr{D}(\mathbb{R}^d)$.
- (d) If (h_j) is an approximate unit in $\mathscr{D}(\mathbb{R}^d)$, then $\Lambda_{U*h_j} \to U$ in $\mathscr{D}'(\mathbb{R}^d)$.
- (e) For each $x \in \mathbb{R}^d$ we have $\tau_x(U * \varphi) = (\tau_x U) * \varphi = U * \tau_x \varphi$.
- (f) $U * (\varphi * \psi) = (U * \varphi) * \psi$.

Notation. If U is a distribution on \mathbb{R}^d ,

- its translate by $x \in \mathbb{R}^d$ is the mapping $\tau_x U$ defined by the formula
- $\tau_{\boldsymbol{x}}U(\varphi) = U(\tau_{-\boldsymbol{x}}\varphi) = U(\boldsymbol{y} \mapsto \varphi(\boldsymbol{y} + \boldsymbol{x})), \quad \varphi \in \mathscr{D}(\mathbb{R}^d);$ • its reflexion is the mapping \check{U} defined by the formula

$$\check{U}(\varphi) = U(\check{\varphi}) = U(\boldsymbol{y} \mapsto \varphi(-\boldsymbol{y})), \quad \varphi \in \mathscr{D}(\mathbb{R}^d).$$

Remark. If U is a distribution on \mathbb{R}^d and $\boldsymbol{x} \in \mathbb{R}^d$, then $\tau_{\boldsymbol{x}}U$ and \check{U} are also distributions on \mathbb{R}^d . If $f \in L^1_{\text{loc}}(\mathbb{R}^d)$, then $\tau_{\boldsymbol{x}} \Lambda_f = \Lambda_{\tau_{\boldsymbol{x}} f}$ a $\Lambda_f = \Lambda_{\check{f}}$.

Remark on the convolution of two distributions: Let U and V be two distributions on \mathbb{R}^d . It would be natural to define their convolution by the formula

$$U * V)(\varphi) = U(\check{V} * \varphi), \quad \varphi \in \mathscr{D}(\mathbb{R}^d).$$

Indeed, if $V = \Lambda_{\psi}$ for some $\psi \in \mathscr{D}(\mathbb{R}^d)$, then we deduce by Proposition 14(b) that $\Lambda_{U*\psi}(\varphi) = U(\check{\psi}*\varphi), \quad \varphi \in \mathscr{D}(\mathbb{R}^d).$

However, it is not possible to define convolution in such generality, because $\check{V} * \varphi$ need not belong to $\mathscr{D}(\mathbb{R}^d)$ (it is a C^{∞} function, but its support need not be compact). Nonetheless in some special cases the above formula provides a meaningful definition. It may be caused mainly by one of the following reasons:

- It may follow from the special properties of V that $\check{V} * \varphi$ must have compact support.
- It may follow from the special properties of U that U may be naturally extended to the space of all C^{∞} functions.
- Combination of these two possibilities: It may follow from the special properties of U and V that U may be naturally extended to a larger space and $\check{V} * \varphi$ must belong to that space.

Examples of situations when the convolution U * V is well defined:

- (1) V has compact support: Then $\check{V} * \varphi$ has compact support for any $\varphi \in \mathscr{D}(\mathbb{R}^d)$ (see Theorem 15(c)).
- (2) U has compact support: We choose a nonnegative function $\psi \in \mathscr{D}(\mathbb{R}^d)$ constantly equal to 1 on an open set containing spt U. We then extend U to $C^{\infty}(\mathbb{R}^d)$ by $\widetilde{U}(f) = U(\psi f)$, $f \in C^{\infty}(\mathbb{R}^d)$.
- (3) $(\overline{U(\boldsymbol{o},r)} \operatorname{spt} V) \cap \operatorname{spt} U$ is compact for each r > 0: For r > 0 we choose a nonnegative function $\psi_r \in \mathscr{D}(\mathbb{R}^d)$ constantly equal to 1 on an open set containing $(\overline{U(\boldsymbol{o},r)} \operatorname{spt} V) \cap \operatorname{spt} U$. Then we extend U to the space

$$\{f \in C^{\infty}(\mathbb{R}^d); \exists r > 0: \operatorname{spt} f \subset \overline{U(o, r)} - \operatorname{spt} V\}$$

by the formula

$$\widetilde{U}(f) = U(\psi_r f), \quad \operatorname{spt} f \subset \overline{U(o, r)} - \operatorname{spt} V.$$

(4) Assume there exist $m, n \in \mathbb{N}_0$ and c, d > 0 such that

$$|U(\varphi)| \leq c \|\varphi\|_n$$
 and $|V(\varphi)| \leq d \|\varphi\|_m$ for $\varphi \in \mathscr{D}(\mathbb{R}^d)$.

Then U may be canonically extended to the space

$$\{f \in C^{\infty}(\mathbb{R}^d); \|f\|_n < \infty\}$$

and for each $\varphi \in \mathscr{D}(\mathbb{R}^d)$ we have $\|\check{V} * \varphi\|_n \leq d \|\varphi\|_{m+n}$. Hence U * V may be defined in a natural way and the resulting distribution satisfies

$$|(U * V)(\varphi)| \le cd \, \|\varphi\|_{m+n} \text{ for } \varphi \in \mathscr{D}(\mathbb{R}^d).$$

Proposition 16. Let U and V be distributions on \mathbb{R}^d satisfying one of the above versions of assumptions. Then:

- (a) U * V is a distribution on \mathbb{R}^d and U * V = V * U.
- (b) If $V = \Lambda_{\varphi}$ for some $\varphi \in \mathscr{D}(\mathbb{R}^d)$, then $U * V = \Lambda_{U * \varphi}$.
- (c) If $U = \Lambda_f$ and $V = \Lambda_{\varphi}$ where $f \in L^1_{\text{loc}}(\mathbb{R}^d)$ and $\varphi \in \mathscr{D}(\mathbb{R}^d)$, then $U * V = \Lambda_{f * \varphi}$.
- (d) If $U = \Lambda_f$ and $V = \Lambda_g$, kde $f, g \in L^1(\mathbb{R}^d)$, then $U * V = \Lambda_{f*g}$.
- (e) $\operatorname{spt}(U * V) \subset \operatorname{spt} U + \operatorname{spt} V$. In particular, if both U and V have compact support, U * V has compact support as well.
- (f) For each multiindex α we have

$$D^{\alpha}(U * V) = (D^{\alpha}U) * V = U * D^{\alpha}V.$$

(g) $U = U * \Lambda_{\delta_0}$ and $D^{\alpha}U = U * D^{\alpha}\Lambda_{\delta_0}$ for each multiindex α .