VII. 6 Convolutions and the Fourier transform of tempered distributions

Notation and convention: Recall that λ^{d} denotes the Lebesgue measure on \mathbb{R}^{d}. Set $m_{d}=$ $(2 \pi)^{-d / 2} \lambda^{d}$. In this section $L^{p}\left(\mathbb{R}^{d}\right)$ will denote the space $L^{p}\left(m_{d}\right)$. The convolution will be considered with respect to this measure as well, i.e.,

$$
f * g(\boldsymbol{x})=\int_{\mathbb{R}^{d}} f(\boldsymbol{y}) g(\boldsymbol{x}-\boldsymbol{y}) \mathrm{d} m_{d}(\boldsymbol{y})=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(\boldsymbol{y}) g(\boldsymbol{x}-\boldsymbol{y}) \mathrm{d} \boldsymbol{y}
$$

Moreover, all spaces are assumed to be complex.

Reminder:

- If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, its Fourier transform is defined by the formula

$$
\widehat{f}(\boldsymbol{t})=\int_{\mathbb{R}^{d}} f(\boldsymbol{x}) e^{-i\langle\boldsymbol{t}, \boldsymbol{x}\rangle} \mathrm{d} m_{d}(\boldsymbol{x})=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(\boldsymbol{x}) e^{-i\langle\boldsymbol{t}, \boldsymbol{x}\rangle} \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{t} \in \mathbb{R}^{d}
$$

- The Fourier transform maps $L^{1}\left(\mathbb{R}^{d}\right)$ to $C_{0}\left(\mathbb{R}^{d}\right)$.
- The Fourier transform maps \mathscr{S} onto \mathscr{S} and $\widehat{\hat{f}}=\check{f}$ for $f \in \mathscr{S}$.

Lemma 24. The Fourier transform is an isomorphism of \mathscr{S} onto \mathscr{S}.
Definition. Let Λ be a tempered distribution on \mathbb{R}^{d}. By its Fourier transform we mean the mapping

$$
\widehat{\Lambda}(\varphi)=\Lambda(\widehat{\varphi}), \quad \varphi \in \mathscr{S} .
$$

Reminder:

- If P is a polynomial on \mathbb{R}^{d}, by \breve{P} we denote the polynomial on \mathbb{R}^{d} defined by the formula $\breve{P}(\boldsymbol{t})=P(i \boldsymbol{t})$ for $\boldsymbol{t} \in \mathbb{R}^{d}$. If P is of the form

$$
P(\boldsymbol{t})=\sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N} c_{\alpha} \boldsymbol{t}^{\alpha}, \quad \boldsymbol{t} \in \mathbb{R}^{d},
$$

where $N \in \mathbb{N}_{0}$ and $c_{\alpha}, \alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N$ are some complex numbers, then

$$
\breve{P}(\boldsymbol{t})=\sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N} i^{|\alpha|} c_{\alpha} t^{\alpha}, \quad \boldsymbol{t} \in \mathbb{R}^{d} .
$$

- If P is a polynomial on \mathbb{R}^{d} of the above form and f is a \mathcal{C}^{∞} function on \mathbb{R}^{d} (or, more generally, on an open subset of \mathbb{R}^{d}), by $P(D) f$ we denote the function defined by the formula

$$
P(D) f=\sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq N} c_{\alpha} D^{\alpha} f .
$$

(This definition has a sense for \mathcal{C}^{N} functions as well.)

Theorem 25 (properties of the Fourier transform on \mathscr{S}^{\prime}).
(a) The Fourier transform is a linear bijection of \mathscr{S}^{\prime} onto \mathscr{S}^{\prime}, for any $\Lambda \in \mathscr{S}^{\prime}$ we have

$$
\widehat{\hat{\Lambda}}=\tilde{\Lambda}, \quad \widehat{\hat{\hat{\Lambda}}}=\Lambda
$$

(b) Let $\left(\Lambda_{n}\right)$ be sequence in \mathscr{S}^{\prime} and $\Lambda \in \mathscr{S}^{\prime}$. Then $\Lambda_{n} \rightarrow \Lambda$ in \mathscr{S}^{\prime} if and only if $\widehat{\Lambda_{n}} \rightarrow \widehat{\Lambda}$ in \mathscr{S}^{\prime}.
(c) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, then $\widehat{\Lambda_{f}}=\Lambda_{\widehat{f}}$.
(d) If $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then $\widehat{\Lambda_{f}}=\Lambda_{\mathcal{P}(f)}$, where \mathcal{P} is the mapping from the Plancherel theorem.
(e) If $\Lambda \in \mathscr{S}^{\prime}$ and P is a polynomial on \mathbb{R}^{d}, then

$$
\widehat{P(D) \Lambda}=\breve{P} \cdot \widehat{\Lambda}, \quad \widehat{P \cdot \Lambda}=\breve{P}(D) \widehat{\Lambda}
$$

Lemma 26. Let $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.
(a) If $\boldsymbol{x}_{n} \rightarrow \boldsymbol{x}$ in \mathbb{R}^{d}, then $\tau_{\boldsymbol{x}_{n}} \varphi \rightarrow \tau_{\boldsymbol{x}} \varphi$ in $\mathscr{S}\left(\mathbb{R}^{d}\right)$.
(b) Let $\boldsymbol{e} \in \mathbb{R}^{d}$. Then $\partial_{\boldsymbol{e}} \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Moreover, if we define for each $r \in \mathbb{R} \backslash\{0\}$ the function φ_{r} by the formula

$$
\varphi_{r}(\boldsymbol{x})=\frac{1}{r}(\varphi(\boldsymbol{x}+r \boldsymbol{e})-\varphi(\boldsymbol{x})), \quad \boldsymbol{x} \in \mathbb{R}^{d}
$$

i.e., $\varphi_{r}=\frac{1}{r}\left(\tau_{-r e} \varphi-\varphi\right)$, then $\varphi_{r} \rightarrow \partial_{e} \varphi$ in $\mathscr{S}\left(\mathbb{R}^{d}\right)$ for $r \rightarrow 0$.

Proposition 27. Let $d_{1}, d_{2} \in \mathbb{N}$ and $\varphi \in \mathscr{S}\left(\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}\right)$.
(a) Let $\Lambda \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d_{1}}\right)$. For $\boldsymbol{y} \in \mathbb{R}^{d_{2}}$ we define $\psi(\boldsymbol{y})=\Lambda(\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))$. Then $\psi \in \mathscr{S}\left(\mathbb{R}^{d_{2}}\right)$ and for each multiindex $\alpha \in \mathbb{N}_{0}^{d_{2}}$ we have $D^{\alpha} \psi(\boldsymbol{y})=\Lambda\left(\boldsymbol{x} \mapsto D^{(\boldsymbol{o}, \alpha)} \varphi(\boldsymbol{x}, \boldsymbol{y})\right)$ for $\boldsymbol{y} \in \mathbb{R}^{d_{2}}$.
(b) (Fubini Theorem for tempered distributions) Let $\Lambda_{1} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d_{1}}\right)$ and $\Lambda_{2} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d_{2}}\right)$. Then

$$
\Lambda_{2}\left(\boldsymbol{y} \mapsto \Lambda_{1}(\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))\right)=\Lambda_{1}\left(\boldsymbol{x} \mapsto \Lambda_{2}(\boldsymbol{y} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))\right) .
$$

Definition. Let U be a tempered distribution on \mathbb{R}^{d} and let $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. By the convolution of φ and U we mean the function $U * \varphi$ defined by the formula

$$
U * \varphi(\boldsymbol{x})=U\left(\tau_{\boldsymbol{x}} \check{\varphi}\right)=U(\boldsymbol{y} \mapsto \varphi(\boldsymbol{x}-\boldsymbol{y})), \quad \boldsymbol{x} \in \mathbb{R}^{d}
$$

Remark. $\operatorname{Ig} \varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$, then this definition coincides with the definition of the convolution of a distribution and a test function from Section VII.4.
Theorem 28 (on the convolution of a temepered distribution and a function from the Schwartz space). Let $U \in \mathscr{S}^{\prime}, \varphi, \psi \in \mathscr{S}$. Then:
(a) $U * \varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ and $D^{\alpha}(U * \varphi)=\left(D^{\alpha} U\right) * \varphi=U * D^{\alpha} \varphi$ for each multiindex α.
(b) $\Lambda_{U * \varphi}$ is a tempered distribution.
(c) If $f \in L^{p}\left(\mathbb{R}^{d}\right)$ for some $p \in[1, \infty]$, then $\Lambda_{f} * \varphi=f * \varphi$.
(d) $\widehat{\Lambda_{U * \varphi}}=\widehat{\varphi} \cdot \widehat{U}, \widehat{\varphi \cdot U}=\Lambda_{\widehat{\varphi} * \widehat{U}}$.
(e) $U *(\varphi * \psi)=(U * \varphi) * \psi$.

