VII.6 Convolutions and the Fourier transform of tempered distributions Notation and convention: Recall that λ^d denotes the Lebesgue measure on \mathbb{R}^d . Set $m_d = (2\pi)^{-d/2}\lambda^d$. In this section $L^p(\mathbb{R}^d)$ will denote the space $L^p(m_d)$. The convolution will be considered with respect to this measure as well, i.e.,

$$f * g(\boldsymbol{x}) = \int_{\mathbb{R}^d} f(\boldsymbol{y}) g(\boldsymbol{x} - \boldsymbol{y}) \, \mathrm{d}m_d(\boldsymbol{y}) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(\boldsymbol{y}) g(\boldsymbol{x} - \boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}.$$

Moreover, all spaces are assumed to be complex.

Reminder:

• If $f \in L^1(\mathbb{R}^d)$, its Fourier transform is defined by the formula

$$\widehat{f}(oldsymbol{t}) = \int_{\mathbb{R}^d} f(oldsymbol{x}) e^{-i\langleoldsymbol{t},oldsymbol{x}
angle} \,\mathrm{d}m_d(oldsymbol{x}) = rac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(oldsymbol{x}) e^{-i\langleoldsymbol{t},oldsymbol{x}
angle} \,\,\mathrm{d}oldsymbol{x}, \quad oldsymbol{t} \in \mathbb{R}^d.$$

- The Fourier transform maps $L^1(\mathbb{R}^d)$ to $C_0(\mathbb{R}^d)$.
- The Fourier transform maps \mathscr{S} onto \mathscr{S} and $\hat{f} = \check{f}$ for $f \in \mathscr{S}$.

Lemma 24. The Fourier transform is an isomorphism of \mathscr{S} onto \mathscr{S} .

Definition. Let Λ be a tempered distribution on \mathbb{R}^d . By its **Fourier transform** we mean the mapping

$$\widehat{\Lambda}(\varphi) = \Lambda(\widehat{\varphi}), \quad \varphi \in \mathscr{S}.$$

Reminder:

• If P is a polynomial on \mathbb{R}^d , by \check{P} we denote the polynomial on \mathbb{R}^d defined by the formula $\check{P}(t) = P(it)$ for $t \in \mathbb{R}^d$. If P is of the form

$$P(oldsymbol{t}) = \sum_{lpha \in \mathbb{N}_0^d, |lpha| \leq N} c_lpha oldsymbol{t}^lpha, \quad oldsymbol{t} \in \mathbb{R}^d,$$

where $N \in \mathbb{N}_0$ and $c_{\alpha}, \alpha \in \mathbb{N}_0^d, |\alpha| \leq N$ are some complex numbers, then

$$reve{P}(m{t}) = \sum_{lpha \in \mathbb{N}_0^d, |lpha| \leq N} i^{|lpha|} c_lpha m{t}^lpha, \quad m{t} \in \mathbb{R}^d.$$

• If P is a polynomial on \mathbb{R}^d of the above form and f is a \mathcal{C}^{∞} function on \mathbb{R}^d (or, more generally, on an open subset of \mathbb{R}^d), by P(D)f we denote the function defined by the formula

$$P(D)f = \sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le N} c_{\alpha} D^{\alpha} f.$$

(This definition has a sense for \mathcal{C}^N functions as well.)

Theorem 25 (properties of the Fourier transform on \mathscr{S}').

(a) The Fourier transform is a linear bijection of \mathscr{S}' onto \mathscr{S}' , for any $\Lambda \in \mathscr{S}'$ we have

$$\widehat{\widehat{\Lambda}} = \check{\Lambda}, \quad \widehat{\widehat{\widehat{\Lambda}}} = \Lambda.$$

- (b) Let (Λ_n) be sequence in \mathscr{S}' and $\Lambda \in \mathscr{S}'$. Then $\Lambda_n \to \Lambda$ in \mathscr{S}' if and only if $\widehat{\Lambda_n} \to \widehat{\Lambda}$ in \mathscr{S}' .
- (c) If $f \in L^1(\mathbb{R}^d)$, then $\widehat{\Lambda_f} = \Lambda_{\widehat{f}}$.
- (d) If $f \in L^2(\mathbb{R}^d)$, then $\widehat{\Lambda_f} = \Lambda_{\mathcal{P}(f)}$, where \mathcal{P} is the mapping from the Plancherel theorem.
- (e) If $\Lambda \in \mathscr{S}'$ and P is a polynomial on \mathbb{R}^d , then

$$\widehat{P(D)\Lambda} = \breve{P} \cdot \widehat{\Lambda}, \quad \widehat{P \cdot \Lambda} = \breve{P}(D)\widehat{\Lambda}$$

Lemma 26. Let $\varphi \in \mathscr{S}(\mathbb{R}^d)$.

- (a) If $\boldsymbol{x}_n \to \boldsymbol{x}$ in \mathbb{R}^d , then $\tau_{\boldsymbol{x}_n} \varphi \to \tau_{\boldsymbol{x}} \varphi$ in $\mathscr{S}(\mathbb{R}^d)$.
- (b) Let $e \in \mathbb{R}^d$. Then $\partial_e \varphi \in \mathscr{S}(\mathbb{R}^d)$. Moreover, if we define for each $r \in \mathbb{R} \setminus \{0\}$ the function φ_r by the formula

$$arphi_r(oldsymbol{x}) = rac{1}{r}(arphi(oldsymbol{x}+roldsymbol{e})-arphi(oldsymbol{x})), \quad oldsymbol{x}\in\mathbb{R}^d,$$

i.e.,
$$\varphi_r = \frac{1}{r}(\tau_{-re}\varphi - \varphi)$$
, then $\varphi_r \to \partial_e \varphi$ in $\mathscr{S}(\mathbb{R}^d)$ for $r \to 0$.

Proposition 27. Let $d_1, d_2 \in \mathbb{N}$ and $\varphi \in \mathscr{S}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2})$.

- (a) Let $\Lambda \in \mathscr{S}'(\mathbb{R}^{d_1})$. For $\boldsymbol{y} \in \mathbb{R}^{d_2}$ we define $\psi(\boldsymbol{y}) = \Lambda(\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}, \boldsymbol{y}))$. Then $\psi \in \mathscr{S}(\mathbb{R}^{d_2})$ and for each multiindex $\alpha \in \mathbb{N}_0^{d_2}$ we have $D^{\alpha}\psi(\boldsymbol{y}) = \Lambda(\boldsymbol{x} \mapsto D^{(\boldsymbol{o},\alpha)}\varphi(\boldsymbol{x}, \boldsymbol{y}))$ for $\boldsymbol{y} \in \mathbb{R}^{d_2}$.
- (b) (Fubini Theorem for tempered distributions) Let $\Lambda_1 \in \mathscr{S}'(\mathbb{R}^{d_1})$ and $\Lambda_2 \in \mathscr{S}'(\mathbb{R}^{d_2})$. Then

$$\Lambda_2(\boldsymbol{y}\mapsto \Lambda_1(\boldsymbol{x}\mapsto arphi(\boldsymbol{x}, \boldsymbol{y}))) = \Lambda_1(\boldsymbol{x}\mapsto \Lambda_2(\boldsymbol{y}\mapsto arphi(\boldsymbol{x}, \boldsymbol{y}))).$$

Definition. Let U be a tempered distribution on \mathbb{R}^d and let $\varphi \in \mathscr{S}(\mathbb{R}^d)$. By the convolution of φ and U we mean the function $U * \varphi$ defined by the formula

$$U * \varphi(\boldsymbol{x}) = U(\tau_{\boldsymbol{x}} \check{\varphi}) = U(\boldsymbol{y} \mapsto \varphi(\boldsymbol{x} - \boldsymbol{y})), \quad \boldsymbol{x} \in \mathbb{R}^d.$$

Remark. Ig $\varphi \in \mathscr{D}(\mathbb{R}^d)$, then this definition coincides with the definition of the convolution of a distribution and a test function from Section VII.4.

Theorem 28 (on the convolution of a tempered distribution and a function from the Schwartz space). Let $U \in \mathscr{S}', \varphi, \psi \in \mathscr{S}$. Then:

- (a) $U * \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ and $D^{\alpha}(U * \varphi) = (D^{\alpha}U) * \varphi = U * D^{\alpha}\varphi$ for each multiindex α .
- (b) $\Lambda_{U*\varphi}$ is a tempered distribution.
- (c) If $f \in L^p(\mathbb{R}^d)$ for some $p \in [1, \infty]$, then $\Lambda_f * \varphi = f * \varphi$.
- (d) $\widehat{\Lambda_{U*\varphi}} = \widehat{\varphi} \cdot \widehat{U}, \ \widehat{\varphi \cdot U} = \Lambda_{\widehat{\varphi}*\widehat{U}}.$
- (e) $U * (\varphi * \psi) = (U * \varphi) * \psi$.