
V.6 Extension and separation theorems

Definition. Let X be a LCS over F. By X∗ we will denote the vector space of all the
continuous linear functionals f : X → F. The space X∗ is called the dual space (or the
dual) of X.

Remarks:

(1) The dual of X is sometimes denoted by X ′. The notation used in the literature is
not unified. We will use for the ‘continuous dual’, i.e., for the space of continuous
linear functionals, the symbol X∗. For the ‘algebraic dual’, i.e., the space of all
linear functionals, we will use the symbol X#.

(2) We define X∗ to be just a vector space, for the time being we do not equip it
with any topology. In the next chapter will consider one natural topology on X∗.
Nonetheless, there exist more natural topologies on X∗.

Theorem 31 (Hahn-Banach extension theorem). Let X be a LCS over F, Y ⊂⊂ X

and f ∈ Y ∗. Then there exists g ∈ X∗ such that g|Y = f .

Corollary 32 (separation from a subspace). Let X be a LCS, Y a closed subspace of

X and x ∈ X \ Y . Then there exists f ∈ X∗ such that f |Y = 0 and f(x) = 1.

Corollary 33 (a proof of density using Hahn-Banach theorem). Let X be a LCS and

let Z ⊂⊂ Y ⊂⊂ X. Then Z is dense in Y if and only if

∀f ∈ X∗ : f |Z = 0⇒ f |Y = 0.

Corollary 34 (the dual separates points). Let X be a HLCS. Then for any x ∈ X\{0}
there exists f ∈ X∗ such that f(x) 6= 0.

Theorem 35 (Hahn-Banach separation theorem). Let X be a LCS, let A,B ⊂ X be

nonempty disjoint convex subsets.

(a) If the interior of A is nonempty, there exist f ∈ X∗ \ {0} and c ∈ R such that

∀a ∈ A ∀b ∈ B : Re f(a) ≤ c ≤ Re f(b).
(b) If A is compact and B is closed, there exist f ∈ X∗ and c, d ∈ R such that

∀a ∈ A ∀b ∈ B : Re f(a) ≤ c < d ≤ Re f(b).

Corollary 36. Let X be a LCS, let A ⊂ X be a nonempty set and let x ∈ X. Then:

(a) x ∈ X \ coA if and only if there exists f ∈ X∗ such that

Re f(x) > sup{Re f(a); a ∈ A}.
(b) x ∈ X \ acoA if and only if there exists f ∈ X∗ such that

|f(x)| > sup{|f(a)| ; a ∈ A}.

Remark: The situation for general TVS is the following:

• The dual X∗ may be defined in the same way. But it may be trivial – even if X
is Hausdoff and nontrivial. If, for example, X = Lp((0, 1)) for some p ∈ (0, 1),
then X∗ = {0}. Therefore Corollary 34 fails for TVS.

• Theorem 31 and Corollaries 32 and 33 fail for TVS.
• Assertion (a) from Theorem 35 holds for TVS as well (with the same proof).
Both assertion (b) and Corollary 36 fail for TVS.


