V. 6 Extension and separation theorems

Definition. Let X be a LCS over \mathbb{F}. By X^{*} we will denote the vector space of all the continuous linear functionals $f: X \rightarrow \mathbb{F}$. The space X^{*} is called the dual space (or the dual) of X.

Remarks:

(1) The dual of X is sometimes denoted by X^{\prime}. The notation used in the literature is not unified. We will use for the 'continuous dual', i.e., for the space of continuous linear functionals, the symbol X^{*}. For the 'algebraic dual', i.e., the space of all linear functionals, we will use the symbol $X^{\#}$.
(2) We define X^{*} to be just a vector space, for the time being we do not equip it with any topology. In the next chapter will consider one natural topology on X^{*}. Nonetheless, there exist more natural topologies on X^{*}.
Theorem 31 (Hahn-Banach extension theorem). Let X be a LCS over $\mathbb{F}, Y \subset \subset X$ and $f \in Y^{*}$. Then there exists $g \in X^{*}$ such that $\left.g\right|_{Y}=f$.
Corollary 32 (separation from a subspace). Let X be a $L C S, Y$ a closed subspace of X and $x \in X \backslash Y$. Then there exists $f \in X^{*}$ such that $\left.f\right|_{Y}=0$ and $f(x)=1$.
Corollary 33 (a proof of density using Hahn-Banach theorem). Let X be a LCS and let $Z \subset \subset Y \subset \subset X$. Then Z is dense in Y if and only if

$$
\forall f \in X^{*}:\left.f\right|_{Z}=\left.0 \Rightarrow f\right|_{Y}=0
$$

Corollary 34 (the dual separates points). Let X be a HLCS. Then for any $x \in X \backslash\{0\}$ there exists $f \in X^{*}$ such that $f(x) \neq 0$.

Theorem 35 (Hahn-Banach separation theorem). Let X be a LCS, let $A, B \subset X$ be nonempty disjoint convex subsets.
(a) If the interior of A is nonempty, there exist $f \in X^{*} \backslash\{0\}$ and $c \in \mathbb{R}$ such that $\forall a \in A \forall b \in B: \operatorname{Re} f(a) \leq c \leq \operatorname{Re} f(b)$.
(b) If A is compact and B is closed, there exist $f \in X^{*}$ and $c, d \in \mathbb{R}$ such that $\forall a \in A \forall b \in B: \operatorname{Re} f(a) \leq c<d \leq \operatorname{Re} f(b)$.

Corollary 36. Let X be a $L C S$, let $A \subset X$ be a nonempty set and let $x \in X$. Then:
(a) $x \in X \backslash \overline{\operatorname{co}} A$ if and only if there exists $f \in X^{*}$ such that

$$
\operatorname{Re} f(x)>\sup \{\operatorname{Re} f(a) ; a \in A\}
$$

(b) $x \in X \backslash \overline{\operatorname{aco}} A$ if and only if there exists $f \in X^{*}$ such that

$$
|f(x)|>\sup \{|f(a)| ; a \in A\}
$$

Remark: The situation for general TVS is the following:

- The dual X^{*} may be defined in the same way. But it may be trivial - even if X is Hausdoff and nontrivial. If, for example, $X=L^{p}((0,1))$ for some $p \in(0,1)$, then $X^{*}=\{0\}$. Therefore Corollary 34 fails for TVS.
- Theorem 31 and Corollaries 32 and 33 fail for TVS.
- Assertion (a) from Theorem 35 holds for TVS as well (with the same proof). Both assertion (b) and Corollary 36 fail for TVS.

