```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LIST OF THEOREMS FOR THE EXAM %%%%%%%%%%%%%%%%%%%%%%%%%
% Explanation:
% the number at the end of line = the number of the theorem in the lecture notes
% the sign before the number:
% * these theorems are not explicitly included into
% the exam questions. Anyway, the knowledge is assumed,
% including the idea of a proof (in case the theorem
% was proved during the lectures).
%
% no sign theorems included to exam questions
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%% Chapter V
%
properties of the numerical radius % V.4 including V. }
structure of normal operators % V.5
characterization of orthogonal projections % V.6
spectrum of a self-adjoint operator % V.7
Hilbert-Schmidt theorem % V. }
Schmidt representation of compact operators % V. }11\mathrm{ including V. }
on closed and closable operators % V. }1
on the inverse of a closed operator % V. }1
properties of the resolvent set, resolvent function and spectrum of an unbounded operator % V. }1
on operators with empty spectrum % V. }2
on kernel and range % V. }2
on the graph of the adjoint operator % V. }2
adjoint operator and closedness % V. }2
properties of symmetric operators % V. }2
spectrum of a self-adjoint operator % V.30, including V. }2
characterization of self-adjoint operators among symmetric ones % V. }3
properties of the Cayley transform % V. }3
on the range of the Cayley transform % V. }3
Cayley transform for self-adjoint operators % V. }3
%
%%% Chapter VI
%
Lax-Milgram lemma % * VI.1
construction and properties of the measurable calculus % VI.4 including the construction
properties of a spectral measure % VI.2
integral of a bounded function with respect to a spectral measure % VI.8
integral of an unbounded function with respect tor a spectral measure % VI. }1
properties of \intfdE (for f possibly unbounded) % V. }1
spectrum of \intfdE % VI. }1
spectral decomposition of a bounded normal operator % VI. }9\mathrm{ and VI. }1
spectral decomposition of a self-adjoint operator % VI.15, VI. }16\mathrm{ and VI. }1
on T*T % * VI. }1
on normal unbounded operators % VI. }2
spectral decomposition of an unbounded normal operator % * VI. 21
diagonalization of a normal operator % * VI. }24\mathrm{ and VI. }2
%
%%% Chapter VII
%
dual to a supremum or infimum of a family of locally convex topologies % VII. }3\mathrm{ including VII. }
on the topologies }\sigma(\mp@subsup{X}{}{*},X)\mathrm{ and }\sigma(\mp@subsup{X}{}{#},X)% VII.
Mackey-Arens theorem % VII.6, including VII. }
Mackey topology of a metrizable LCS % VII. }7\mathrm{ and VII. }
```

description of the $b w^{*}$-topology \% VII. 11
Banach-Dieudonné theorem and its consequences \% VII.12, VII. 13 and VII. 14
Embedding of a Banach space into a $C(K)$ space \% VII. 15
properties of faces \% VII. 17
Krein-Milman theorem \% VII. 18
Minkowski-Carathéodory theorem \% VII. 19
Milman theorem \% VII. 21
on the barycenter of a measure \% VII. 22
integral representation theorem \% VII. 23
angelicity of $\left(C(K), \tau_{p}\right)$ and $(X, w) \% *$ VII. 26
on relatively countably compact subsets of $\left(C(K), \tau_{p}\right)$ \% VII. 27
Kaplansky theorem on tightness \% VII. 28
on separable compact subsets of $\left(C(K), \tau_{p}\right) \%$ VII. 29
Eberlein-Šmulyan theorem \% * VII. 30
weak compactness and τ_{p}-compactness $\%$ VII. 31
properties of weakly compact operators \% VII. 32
Gantmacher theorem \% VII. 33
Krein theorem \% VII. 34
\%

