
V. Bounded and unbounded operators on a Hilbert spae

Convention. In this hapter we onsider the Banah spaes over the omplex �eld (exept in Setion V.2 or unless

the onverse is expliitly stated). In partiular, the Hilbert spaes we deal with are the omplex ones.

V.1 Various types of bounded operators on Hilbert spaes and their properties

Reminder: Let H and K be Hilbert spaes.

(1) By L(H,K) we denote the Banah spae of all the bounded linear operators T : H → K equipped with the

operator norm. L(H) is a shortut for L(H,H).

(2) For any T ∈ L(H,K) there is a unique operator T ∗ ∈ L(K,H), alled the adjoint of T satisfying

〈Tx, y〉K = 〈x, T ∗y〉H for x ∈ H and y ∈ K.

(3) The mapping T 7→ T ∗
is an involution on L(H) it turns L(H) to be a C∗

-algebra. Thus the notions and the

results from Chapter IV ould be applied to L(H). This applies, in partiular, to the notions of spetrum,

spetral radius, resolvent set, resolvent funtion, holomorphi funtional alulus, self-adjoint, normal and

unitary elements and ontinuous funtional alulus for normal elements.

(4) For x, y ∈ H the following polarization identity holds:

〈x, y〉 = 1

4

(

‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2
)

.

De�nition. Let H and K be Hilbert spaes. An operator T ∈ L(H,K) is alled unitary if T ∗
= T−1

, i.e., if

T ∗T = IH and TT ∗
= IK .

Proposition 1 (a haraterization of unitary operators). Let H and K be Hilbert spaes and T ∈ L(H,K).

Consider the following assertions:

(i) T is unitary.

(ii) T is an isometry of H onto K.

(iii) T is an isometry of H into K.

(iv) 〈Tx, T y〉K = 〈x, y〉H for x, y ∈ H .

Then (i) ⇔ (ii) ⇒ (iii) ⇔ (iv). If T is assumed to be onto, all the assertions are equivalent.

De�nition. Let X be a Banah spae, T ∈ L(X) and λ ∈ σ(T ).

• We say that λ is an eigenvalue of T if λI − T is not one-to-one, i.e., whenever there is x ∈ X \ {o} suh

that Tx = λx (then x is an eigenvetor assoiated to λ). The set of all the eigenvalues is alled the point

spetrum of T and is denoted by σp(T ).

• We say that λ is an approximate eigenvalue of T if there is a sequene of vetors (xn) of norm one suh that

(λI − T )xn → o. The set of all the approximate eigenvalues is alled the approximate point spetrum of T

and is denoted by σap(T ).

• We say that λ belongs to the ontinuous spetrum σc(T ) if λI − T is one-to-one, has dense range but is not

onto.

• We say that λ belongs to the residual spetrum σr(T ) (also alled ompression spetrum) if λI − T is one to

one and its range is not dense.

Proposition 2 (on subsets of the spetrum). Let X be a Banah spae and T ∈ L(X). Then the following

assertions hold:

(a) σp(T ) ⊂ σap(T ).

(b) λ ∈ C \ σap(T ) if and only if λI − T is an isomorphism of X into X .

() σ(T ) = σap(T ) ∪ σr(T ).

(d) σc(T ) = σap(T ) \ (σp(T ) ∪ σr(T ))) = σ(T ) \ (σp(T ) ∪ σr(T )).

(e) λ ∈ σr(T ) \ σap(T ) if and only if λI − T is an isomorphism of X onto a proper losed subspae of X .

De�nition. Let H be a Hilbert spae and T ∈ L(H).

• The numerial range of T is the set W (T ) = {〈Tx, x〉 ;x ∈ H, ‖x‖ = 1}.
• The numerial radius of T is de�ned by w(T ) = sup{|λ| ;λ ∈ W (T )} = sup{|〈Tx, x〉| ;x ∈ H, ‖x‖ = 1}.

Lemma 3 (polarization formula for an operator). Let H be a Hilbert spae and T ∈ L(H). For eah x, y ∈ H

the following formula holds:

〈Tx, y〉 = 1

4

(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉+ i 〈T (x+ iy), x+ iy〉 − i 〈T (x− iy), x− iy〉)

Proposition 4 (properties of the numerial radius). Let H be a Hilbert spae.

(a) The numerial radius w is an equivalent norm on L(H) satisfying

1

2

‖T ‖ ≤ w(T ) ≤ ‖T ‖ for T ∈ L(H).

(b) If T ∈ L(H) satis�es 〈Tx, x〉 = 0 for all x ∈ H , then T = 0.

() If S, T ∈ L(H) satisfy 〈Tx, x〉 = 〈Sx, x〉 for all x ∈ H , then S = T .

(d) W (T ) is a onneted subset of C for T ∈ L(H).

(e) σp(T ) ⊂ W (T ) and σ(T ) ⊂ W (T ) for T ∈ L(H).

(f) w(T ) ≥ r(T ) for T ∈ L(H).



Proposition 5 (struture of normal operators). Let H be a Hilbert spae and T ∈ L(H). The operator T is

normal if and only if ‖Tx‖ = ‖T ∗x‖ for eah x ∈ H . If T is normal, then the following assertions hold.

(a) kerT = kerT ∗
and kerT = (R(T ))⊥.

(b) R(T ) is dense if and only if T is one-to-one. Hene, σr(T ) = ∅ and σ(T ) = σap(T ).

() If λ ∈ C and x ∈ H then Tx = λx if and only if T ∗x = λx. In partiular, σp(T
∗
) = {λ;λ ∈ σp(T )}.

(d) If λ
1

, λ
2

∈ σp(T ) are distint, then ker(λ
1

I − T ) ⊥ ker(λ
2

I − T ).

Proposition 6 (haraterization of orthogonal projetions). Let H be a Hilbert spae and let P ∈ L(H) be a

projetion (i.e., P 2

= P ). The following assertions are equivalent:

(i) P is an orthogonal projetion, i.e., kerP ⊥ R(P ).

(ii) P is self-adjoint.

(iii) P is normal.

(iv) 〈Px, x〉 = ‖Px‖2 for x ∈ H .

(v) 〈Px, x〉 ≥ 0 for x ∈ H .

(vi) ‖P‖ ≤ 1.

Moreover, if P,Q ∈ L(H) are two orthogonal projetions, then R(P ) ⊥ R(Q) if and only if PQ = 0. In this ase

P and Q are alled mutually orthogonal.

Proposition 7 (spetrum of a self-adjoint operator). Let H be a Hilbert spae and T ∈ L(H).

(a) T is self-adjoint if and only if W (T ) ⊂ R.

(b) Suppose that T is self-adjoint and set a = infW (T ) and b = supW (T ). Then σ(T ) ⊂ [a, b℄, a, b ∈ σ(T ),

‖T ‖ = max{|a| , |b|} and σ(T ) ontains one of the numbers ‖T ‖, −‖T ‖.
() W (T ) ⊂ [0,∞) if and only if T is self-adjoint and σ(T ) ⊂ [0,∞).

Remarks and de�nitions.

(1) Operators satisfying the two equivalent onditions from Proposition 7() are alled positive.

(2) T ∗T is a positive operator for any T ∈ L(H).

(3) If T ∈ L(H), we de�ne |T | =
√
T ∗T (i.e., we apply the ontinuous funtion t 7→

√
t to the positive operator

T ∗T ).

(4) If T is normal, then the operator |T | de�ned above oinides with the operator obtained by applying the

ontinuous funtion λ 7→ |λ| to the operator T . If T is not normal, then |T | 6= |T ∗|.
(5) An operator U ∈ L(H) is said to be a partial isometry if there is a losed subspae H

1

⊂ H suh that U |H
1

is an isometry of H
1

into H and U |H⊥

1

= 0.

Theorem 8 (polar deomposition). Let H be a Hilbert spae and T ∈ L(H). Then there is a unique partial

isometry U ∈ L(H) suh that T = U |T | and U = 0 on R(|T |)⊥.
Moreover, U∗

is also a partial isometry and |T | = U∗T and U∗
= 0 on R(T )⊥.

Theorem 9 (Hilbert-Shmidt). Let H be a Hilbert spae and T ∈ L(H) be a ompat normal operator. Then

there is an orthonormal basis of H onsisting of eigenvetors of T . Moreover, if T 6= 0, then there exist an

orthonormal system (xk)k∈N and nonzero omplex numbers (λk)k∈N , where either N = N or N = {1, 2, . . . ,m}
for some m ∈ N, suh that

Tx =

∑

k∈N λk 〈x, xk〉xk, x ∈ H.

Proposition 10. Let H be an in�nite-dimensional Hilbert spae. Let T ∈ L(H) be a ompat normal operator

represented as in Theorem 9. Then σ(T ) = {0} ∪ {λk; k ∈ N}. If f ∈ C(σ(T )) is arbitrary, then
~f(T )x = f(0)x+

∑

k∈N (f(λk)− f(0)) 〈x, xk〉xk, x ∈ H.

In partiular,

~f(T ) is ompat if and only if f(0) = 0.

Theorem 11 (Shmidt representation of ompat operators). Let H be a Hilbert spae and T ∈ L(H) be a

nonzero ompat operator. Then there are orthonormal systems (ek)k∈N , (fk)k∈N and positive numbers (αk)k∈N ,

where either N = N or N = {1, 2, . . . ,m} for some m ∈ N, suh that

Tx =

∑

k∈N αk 〈x, ek〉 fk, x ∈ H.

Remarks: As spei�ed above, all the statements hold for omplex spaes. For real spaes some of the statements

hold in the same way, some require a modi�ation and some do not hold at all. More preisely:

• The adjoint operator may be de�ned in the real ase in the same way. The polarization identity in the real

ase is simpler: 〈x, y〉 = 1

4

(‖x+ y‖2 − ‖x− y‖2). Proposition 1 and Proposition 6 hold in the same form

for real spaes, a proof may be done in the same way. Proposition 5 requires a modi�ation for real spaes.

• The spetrum is onsidered only in omplex spaes, for real spaes (note that λ would be also real) it ould

be empty. The numerial range and radius may be of ourse de�ned in the real ase as well. But Lemma 3

does not hold for real spaes (neither any analogue). This is related to the fat that assertions (a)-() from

Proposition 4 and assertions (a),() from Proposition 7 fail in the real ase. It may happen that a nonzero

operator has zero numerial radius.

• Some statements remain to be true in the real ase at least for self-adjoint operators (for example Proposition

7(b) and Theorem 9). We will analyze the situation later, at the end of Chapter VI.


