V. Bounded and unbounded operators on a Hilbert space

Convention. In this chapter we consider the Banach spaces over the complex field (except in Section V. 2 or unless the converse is explicitly stated). In particular, the Hilbert spaces we deal with are the complex ones.

V. 1 Various types of bounded operators on Hilbert spaces and their properties

Reminder: Let H and K be Hilbert spaces.
(1) By $L(H, K)$ we denote the Banach space of all the bounded linear operators $T: H \rightarrow K$ equipped with the operator norm. $L(H)$ is a shortcut for $L(H, H)$.
(2) For any $T \in L(H, K)$ there is a unique operator $T^{*} \in L(K, H)$, called the adjoint of T satisfying
$\langle T x, y\rangle_{K}=\left\langle x, T^{*} y\right\rangle_{H} \quad$ for $x \in H$ and $y \in K$.
(3) The mapping $T \mapsto T^{*}$ is an involution on $L(H)$ it turns $L(H)$ to be a C^{*}-algebra. Thus the notions and the results from Chapter IV could be applied to $L(H)$. This applies, in particular, to the notions of spectrum, spectral radius, resolvent set, resolvent function, holomorphic functional calculus, self-adjoint, normal and unitary elements and continuous functional calculus for normal elements.
(4) For $x, y \in H$ the following polarization identity holds:

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right) .
$$

Definition. Let H and K be Hilbert spaces. An operator $T \in L(H, K)$ is called unitary if $T^{*}=T^{-1}$, i.e., if $T^{*} T=I_{H}$ and $T T^{*}=I_{K}$.
Proposition 1 (a characterization of unitary operators). Let H and K be Hilbert spaces and $T \in L(H, K)$. Consider the following assertions:
(i) T is unitary.
(ii) T is an isometry of H onto K.
(iii) T is an isometry of H into K.
(iv) $\langle T x, T y\rangle_{K}=\langle x, y\rangle_{H}$ for $x, y \in H$.

Then $(i) \Leftrightarrow(i i) \Rightarrow(i i i) \Leftrightarrow(i v)$. If T is assumed to be onto, all the assertions are equivalent.
Definition. Let X be a Banach space, $T \in L(X)$ and $\lambda \in \sigma(T)$.

- We say that λ is an eigenvalue of T if $\lambda I-T$ is not one-to-one, i.e., whenever there is $x \in X \backslash\{\boldsymbol{o}\}$ such that $T x=\lambda x$ (then x is an eigenvector associated to λ). The set of all the eigenvalues is called the point spectrum of T and is denoted by $\sigma_{p}(T)$.
- We say that λ is an approximate eigenvalue of T if there is a sequence of vectors $\left(x_{n}\right)$ of norm one such that $(\lambda I-T) x_{n} \rightarrow \boldsymbol{o}$. The set of all the approximate eigenvalues is called the approximate point spectrum of T and is denoted by $\sigma_{a p}(T)$.
- We say that λ belongs to the continuous spectrum $\sigma_{c}(T)$ if $\lambda I-T$ is one-to-one, has dense range but is not onto.
- We say that λ belongs to the residual spectrum $\sigma_{r}(T)$ (also called compression spectrum) if $\lambda I-T$ is one to one and its range is not dense.

Proposition 2 (on subsets of the spectrum). Let X be a Banach space and $T \in L(X)$. Then the following assertions hold:
(a) $\sigma_{p}(T) \subset \sigma_{a p}(T)$.
(b) $\lambda \in \mathbb{C} \backslash \sigma_{a p}(T)$ if and only if $\lambda I-T$ is an isomorphism of X into X.
(c) $\sigma(T)=\sigma_{a p}(T) \cup \sigma_{r}(T)$.
(d) $\left.\sigma_{c}(T)=\sigma_{a p}(T) \backslash\left(\sigma_{p}(T) \cup \sigma_{r}(T)\right)\right)=\sigma(T) \backslash\left(\sigma_{p}(T) \cup \sigma_{r}(T)\right)$.
(e) $\lambda \in \sigma_{r}(T) \backslash \sigma_{a p}(T)$ if and only if $\lambda I-T$ is an isomorphism of X onto a proper closed subspace of X.

Definition. Let H be a Hilbert space and $T \in L(H)$.

- The numerical range of T is the set $W(T)=\{\langle T x, x\rangle ; x \in H,\|x\|=1\}$.
- The numerical radius of T is defined by $w(T)=\sup \{|\lambda| ; \lambda \in W(T)\}=\sup \{|\langle T x, x\rangle| ; x \in H,\|x\|=1\}$.

Lemma 3 (polarization formula for an operator). Let H be a Hilbert space and $T \in L(H)$. For each $x, y \in H$ the following formula holds:

$$
\langle T x, y\rangle=\frac{1}{4}(\langle T(x+y), x+y\rangle-\langle T(x-y), x-y\rangle+i\langle T(x+i y), x+i y\rangle-i\langle T(x-i y), x-i y\rangle)
$$

Proposition 4 (properties of the numerical radius). Let H be a Hilbert space.
(a) The numerical radius w is an equivalent norm on $L(H)$ satisfying $\frac{1}{2}\|T\| \leq w(T) \leq\|T\|$ for $T \in L(H)$.
(b) If $T \in L(H)$ satisfies $\langle T x, x\rangle=0$ for all $x \in H$, then $T=0$.
(c) If $S, T \in L(H)$ satisfy $\langle T x, x\rangle=\langle S x, x\rangle$ for all $x \in H$, then $S=T$.
(d) $W(T)$ is a connected subset of \mathbb{C} for $T \in L(H)$.
(e) $\sigma_{p}(T) \subset W(T)$ and $\sigma(T) \subset \overline{W(T)}$ for $T \in L(H)$.
(f) $w(T) \geq r(T)$ for $T \in L(H)$.

Proposition 5 (structure of normal operators). Let H be a Hilbert space and $T \in L(H)$. The operator T is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$ for each $x \in H$. If T is normal, then the following assertions hold.
(a) $\operatorname{ker} T=\operatorname{ker} T^{*}$ and $\operatorname{ker} T=(R(T))^{\perp}$.
(b) $R(T)$ is dense if and only if T is one-to-one. Hence, $\sigma_{r}(T)=\emptyset$ and $\sigma(T)=\sigma_{a p}(T)$.
(c) If $\lambda \in \mathbb{C}$ and $x \in H$ then $T x=\lambda x$ if and only if $T^{*} x=\bar{\lambda} x$. In particular, $\sigma_{p}\left(T^{*}\right)=\left\{\bar{\lambda} ; \lambda \in \sigma_{p}(T)\right\}$.
(d) If $\lambda_{1}, \lambda_{2} \in \sigma_{p}(T)$ are distinct, then $\operatorname{ker}\left(\lambda_{1} I-T\right) \perp \operatorname{ker}\left(\lambda_{2} I-T\right)$.

Proposition 6 (characterization of orthogonal projections). Let H be a Hilbert space and let $P \in L(H)$ be a projection (i.e., $P^{2}=P$). The following assertions are equivalent:
(i) P is an orthogonal projection, i.e., $\operatorname{ker} P \perp R(P)$.
(ii) P is self-adjoint.
(iii) P is normal.
(iv) $\langle P x, x\rangle=\|P x\|^{2}$ for $x \in H$.
(v) $\langle P x, x\rangle \geq 0$ for $x \in H$.
(vi) $\|P\| \leq 1$.

Moreover, if $P, Q \in L(H)$ are two orthogonal projections, then $R(P) \perp R(Q)$ if and only if $P Q=0$. In this case P and Q are called mutually orthogonal.
Proposition 7 (spectrum of a self-adjoint operator). Let H be a Hilbert space and $T \in L(H)$.
(a) T is self-adjoint if and only if $W(T) \subset \mathbb{R}$.
(b) Suppose that T is self-adjoint and set $a=\inf W(T)$ and $b=\sup W(T)$. Then $\sigma(T) \subset[a, b], a, b \in \sigma(T)$, $\|T\|=\max \{|a|,|b|\}$ and $\sigma(T)$ contains one of the numbers $\|T\|,-\|T\|$.
(c) $W(T) \subset[0, \infty)$ if and only if T is self-adjoint and $\sigma(T) \subset[0, \infty)$.

Remarks and definitions.

(1) Operators satisfying the two equivalent conditions from Proposition 7(c) are called positive.
(2) $T^{*} T$ is a positive operator for any $T \in L(H)$.
(3) If $T \in L(H)$, we define $|T|=\sqrt{T^{*} T}$ (i.e., we apply the continuous function $t \mapsto \sqrt{t}$ to the positive operator $\left.T^{*} T\right)$.
(4) If T is normal, then the operator $|T|$ defined above coincides with the operator obtained by applying the continuous function $\lambda \mapsto|\lambda|$ to the operator T. If T is not normal, then $|T| \neq\left|T^{*}\right|$.
(5) An operator $U \in L(H)$ is said to be a partial isometry if there is a closed subspace $H_{1} \subset H$ such that $\left.U\right|_{H_{1}}$ is an isometry of H_{1} into H and $\left.U\right|_{H_{1}^{\perp}}=0$.
Theorem 8 (polar decomposition). Let H be a Hilbert space and $T \in L(H)$. Then there is a unique partial isometry $U \in L(H)$ such that $T=U|T|$ and $U=0$ on $R(|T|)^{\perp}$.

Moreover, U^{*} is also a partial isometry and $|T|=U^{*} T$ and $U^{*}=0$ on $R(T)^{\perp}$.
Theorem 9 (Hilbert-Schmidt). Let H be a Hilbert space and $T \in L(H)$ be a compact normal operator. Then there is an orthonormal basis of H consisting of eigenvectors of T. Moreover, if $T \neq 0$, then there exist an orthonormal system $\left(x_{k}\right)_{k \in N}$ and nonzero complex numbers $\left(\lambda_{k}\right)_{k \in N}$, where either $N=\mathbb{N}$ or $N=\{1,2, \ldots, m\}$ for some $m \in \mathbb{N}$, such that

$$
T x=\sum_{k \in N} \lambda_{k}\left\langle x, x_{k}\right\rangle x_{k}, \quad x \in H
$$

Proposition 10. Let H be an infinite-dimensional Hilbert space. Let $T \in L(H)$ be a compact normal operator represented as in Theorem 9. Then $\sigma(T)=\{0\} \cup\left\{\lambda_{k} ; k \in N\right\}$. If $f \in \mathcal{C}(\sigma(T))$ is arbitrary, then

$$
\tilde{f}(T) x=f(0) x+\sum_{k \in N}\left(f\left(\lambda_{k}\right)-f(0)\right)\left\langle x, x_{k}\right\rangle x_{k}, \quad x \in H .
$$

In particular, $\tilde{f}(T)$ is compact if and only if $f(0)=0$.
Theorem 11 (Schmidt representation of compact operators). Let H be a Hilbert space and $T \in L(H)$ be a nonzero compact operator. Then there are orthonormal systems $\left(e_{k}\right)_{k \in N},\left(f_{k}\right)_{k \in N}$ and positive numbers $\left(\alpha_{k}\right)_{k \in N}$, where either $N=\mathbb{N}$ or $N=\{1,2, \ldots, m\}$ for some $m \in \mathbb{N}$, such that

$$
T x=\sum_{k \in N} \alpha_{k}\left\langle x, e_{k}\right\rangle f_{k}, \quad x \in H
$$

Remarks: As specified above, all the statements hold for complex spaces. For real spaces some of the statements hold in the same way, some require a modification and some do not hold at all. More precisely:

- The adjoint operator may be defined in the real case in the same way. The polarization identity in the real case is simpler: $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$. Proposition 1 and Proposition 6 hold in the same form for real spaces, a proof may be done in the same way. Proposition 5 requires a modification for real spaces.
- The spectrum is considered only in complex spaces, for real spaces (note that λ would be also real) it could be empty. The numerical range and radius may be of course defined in the real case as well. But Lemma 3 does not hold for real spaces (neither any analogue). This is related to the fact that assertions (a)-(c) from Proposition 4 and assertions (a),(c) from Proposition 7 fail in the real case. It may happen that a nonzero operator has zero numerical radius.
- Some statements remain to be true in the real case at least for self-adjoint operators (for example Proposition $7(\mathrm{~b})$ and Theorem 9). We will analyze the situation later, at the end of Chapter VI.

