VI. 5 Complements to the theory of unbounded operators

Proposition 24. Let E be an abstract spectral measure in a Hilbert space H defined on a σ-algebra \mathcal{A}. For an \mathcal{A}-measurable function $f: \mathbb{C} \rightarrow \mathbb{C}$ set $\Phi(f)=\int f \mathrm{~d} E$.
(1) Let $x \in H$. Set $H_{x}=\left\{\Phi(f) x ; f \in \mathbb{C}_{b}(\mathbb{C})\right\}$. Then H_{x} is a (not necessarily closed) subspace of H and the mapping $U_{x}: f \mapsto \Phi(f) x$ is a linear isometry of the space $L^{2}\left(E_{x, x}\right)$ onto $\overline{H_{x}}$.
(2) There exists a set $\Gamma \subset S_{H}$ satisfying:

- $H_{x} \perp H_{y}$ for $x, y \in \Gamma, x \neq y$.
- $\operatorname{span}\left(\bigcup_{x \in \Gamma} H_{x}\right)$ is a dense subspace H.
(3) Let $\Omega=\Gamma \times \mathbb{C}$. Let

$$
\tilde{\mathcal{A}}=\{A \subset \Omega ; \forall x \in \Gamma:\{\lambda \in \mathbb{C} ;(x, \lambda) \in A\} \in \mathcal{A}\}
$$

and

$$
\mu(A)=\sum_{x \in \Gamma} E_{x, x}(\{\lambda \in \mathbb{C} ;(x, \lambda) \in A\}), \quad A \in \tilde{\mathcal{A}} .
$$

Then $(\Omega, \tilde{\mathcal{A}}, \mu)$ is a measure space (with a nonnegative measure). Moreover, the mapping $U: L^{2}(\mu) \rightarrow H$ defined by

$$
U(g)=\sum_{x \in \Gamma} \Phi(\lambda \mapsto g(x, \lambda)) x, \quad g \in L^{2}(\mu)
$$

is a linear isometry of $L^{2}(\mu)$ onto H.
(4) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an \mathcal{A}-measurable function. Then $\Phi(f)=U M_{\tilde{f}} U^{*}$, where

$$
\tilde{f}(x, \lambda)=f(\lambda), \quad(x, \lambda) \in \Omega
$$

anf $M_{\tilde{f}}$ is the operator on $L^{2}(\mu)$ given by

$$
M_{\tilde{f}} g=\tilde{f} \cdot g, \quad g \in D\left(M_{\tilde{f}}\right)=\left\{g \in L^{2}(\mu) ; \tilde{f} \cdot g \in L^{2}(\mu)\right\} .
$$

Theorem 25 (diagonalization of a normal operator). Let T be a normal operator on a Hilbert space H. Then T is unitarily equivalent to a suitable multiplication operator. I.e., there exist a nonnegative measure μ, a unitary operator $U: L^{2}(\mu) \rightarrow H$ and a μ-measurable function f such that $T=U M_{f} U^{*}$, where M_{f} is defined as in Proposition 24. Moreover:
(a) If T is selfadjoint, f can be chosen to be real-valued.
(b) If T is bounded, f can be chosen to be bounded.
(c) If H is separable, μ can be chosen to be σ-finite.

Theorem 26 (an alternative expression of the spectral decomposition of a selfadjoint operator). Let T be a selfadjoint operator on H and let E be its spectral measure (from Theorem 36). Then $E(\mathbb{C} \backslash \mathbb{R})=0$. For $\lambda \in \mathbb{R}$ set $E_{\lambda}=E((-\infty, \lambda])$. Then:
(a) E_{λ} is an orthogonal projection for each $\lambda \in \mathbb{R}$.
(b) $E_{\lambda} E_{\mu}=E_{\mu} E_{\lambda}=E_{\min \{\lambda, \mu\}}$ for $\lambda, \mu \in \mathbb{R}$.
(c) $\lim _{\mu \rightarrow \lambda+} E_{\mu} x=E_{\lambda} x$ for each $x \in H$ and $\lambda \in \mathbb{R}$.
(d) If λ is not an eigenvalue of T, then $\lim _{\mu \rightarrow \lambda-} E_{\mu} x=E_{\lambda} x$ for each $x \in H$.
(e) If λ is an eigenvalue of T, then the formula $P_{\lambda} x=\lim _{\mu \rightarrow \lambda-} E_{\mu} x, x \in H$, defines an orthogonal projectiom such that $E_{\lambda}-P_{\lambda}$ is also an orthogonal projection and, moreover, $R\left(E_{\lambda}-P_{\lambda}\right)=\operatorname{Ker}(\lambda I-T)$.
(f) $\lim _{\mu \rightarrow-\infty} E_{\mu} x=0$ and $\lim _{\mu \rightarrow+\infty} E_{\mu} x=x$ for each $x \in H$.
(g) A real number λ belongs to $\rho(T)$ if and only if the mapping $\mu \mapsto E_{\mu}$ is constant on a neighborhood of λ.

Theorem 27 (selfadjoint operators on a real Hilbert space). Let H be a real Hilbert space and let T be an operator na H. Then T^{*} can be defined in the same way as in the complex case (see Section V.4). Let H_{C} be the hilbertian complexification of H, i.e., the space $H_{C}=$ $H+i H=\{x+i y ; x, y \in H\}$ equipped with the scalar product

$$
\langle x+i y, u+i v\rangle=\langle x, u\rangle+\langle y, v\rangle+i\langle y, u\rangle-i\langle x, v\rangle, \quad x+i y, u+i v \in H_{C} .
$$

Define an operator T_{C} on H_{C} by

$$
T_{C}(x+i y)=T(x)+i T(y), \quad x+i y \in D\left(T_{C}\right)=D(T)+i D(T)
$$

Then:
(a) If T is densely defined, then T_{C} is also densely defined and $\left(T_{C}\right)^{*}=\left(T^{*}\right)_{C}$.
(b) If $T \in L(H)$, then $T_{C} \in L\left(H_{C}\right)$ and $\left\|T_{C}\right\|=\|T\|$.
(c) If T is selfadjoint, then T_{C} is also selfadjoint and, moreover, for $\lambda \in \mathbb{R}$ we have

$$
\lambda I-T \text { is invertible in } L(H) \Leftrightarrow \lambda I_{C}-T_{C} \text { is invertible in } L\left(H_{C}\right) .
$$

(d) Let T be selfadjoint and let E be the spectral measure of T_{C}, let \mathcal{A} be the corresponding σ-algebra. Then the formula

$$
E_{R}(A)=\left.E(A)\right|_{H}, \quad A \in \mathcal{A}
$$

defines a "real spectral measure" on \mathbb{R} and $T=\int \mathrm{id} \mathrm{d} E_{R}$.
Corollary 28. Let H be a real Hilbert space.
(i) If $T \in L(H)$ is self-adjoint, then $\sigma(T)$ is a nonempty compact subset of \mathbb{R}. Moreover, given a real-valued continuous function f on $\sigma(T)$ we may define $\tilde{f}(T)$ (as the restriction of $\tilde{f}\left(T_{C}\right)$ to $\left.H\right)$. The assignment $f \mapsto \tilde{f}(T)$ then satisfies conditions (a)-(e) from Theorem IV. 38 (after obvious adjustments).
(ii) If $T \in L(H)$, we may define the operator $|T|=\sqrt{T^{*} T}$ (as in Section V.1). Theorem V. 8 is therefore valid for real space as well.
(iii) If $T \in L(H)$ is compact and self-adjoint, the statement of Theorem V. 9 holds (the numbers λ_{k} are real). Further, Theorem V. 10 holds for a real-valued function f.
(iv) If $T \in L(H)$ is compact, the statement of Theorem V. 11 holds.

