
VII. More on loally onvex topologies

Reminder:

• A loally onvex spae is a vetor spae X over F equipped with a topology T with the properties:

◦ The mapping (x, y) 7→ x+ y is a ontinuous mapping X ×X → X.

◦ The mapping (t, x) 7→ t · x is a ontinuous mapping F×X → X.

◦ There exists a base of neighborhoods of zero formed by onvex sets.

• Let X be a vetor spae over F and let U be a nonempty system of its subsets with the properties:

(a) Elements of U are absolutely onvex and absorbing.

(b) For any U ∈ U there exists V ∈ U satisfying 2V ⊂ U .

() For any two elements U, V ∈ U there exists W ∈ U satisfying W ⊂ U ∩ V .

Then there exists a unique loally onvex topology onX suh that U is a base of its neighborhoods

of zero. This topology is Hausdor� if and only if

⋂

U = {o}.
Conversely, any loally onvex spae has a base of neighborhoods of zero U with the properties

(a)-(). Moreover, U an onsist of open sets.

• Let X be a vetor spae over F and let P be a nonempty family of seminorms on X. Then the

family

U = {{x ∈ X; p
1

(x) < c
1

, . . . , pn(x) < cn}; p1, . . . , pn ∈ P , c
1

, . . . , cn ∈ (0,∞)}

is a base of neighborhoods of zero of some (uniquely determined) loally onvex topology on X.

Conversely, any loally onvex topology on X is de�ned in this way by a family of seminorms,

for example by the family of all the ontinuous seminorms.

Moreover, if the topology T is generated by a family of seminorms P , then a seminorm p is

T -ontinuous if and only if there exist p
1

, . . . , pn ∈ P and c > 0 suh that p ≤ c ·max{p
1

, . . . , pn}.

VII.1 Lattie of loally onvex topologies and topologies agreeing with duality

Notation: Let X be a vetor spae. Denote by the symbol LC(X) the family of all loally onvex

topologies on X.

Proposition 1. Let X be a vetor spae. Then LC(X) is a omplete lattie. I.e., whenever F ⊂
LC(X) is a nonempty subfamily, there exist the weakest loally onvex topology �ner than all the

elements of F (we denote it supF) and the �nest loally onvex topology weaker than all the elements

of F (we denote it inf F). They an be desribed as follows:

• supF is generated by the family of all the seminorms whih are ontinuous in some topology

from F.

• inf F is generated by the family of all the seminorms whih are ontinuous in all topologies from

F.

Remarks:

(1) If at least one element of F is a Hausdor� topology, then supF is a Hausdor� topology as well.

(2) supLC(X) is the strongest loally onvex topology. A base of neighborhoods of zero is formed

by all the absorbing absolutely onvex sets. All the seminorms are ontinuous in it, so it is

generated by the family of all the seminorms on X. All linear funtionals are ontinuous in it,

hene (X, supLC(X))

∗
= X#

(the algebrai dual of X).

(3) inf LC(X) is the indisrete topology, the unique neighborhood of zero is the whole spae X, the

unique ontinuous seminorm is the zero one and the unique ontinuous linear funtional is the

zero one.

(4) If dimX < ∞, then X admits a unique Hausdor� loally onvex topology.

(5) Let dimX = ∞. Then inf F need not be a Hausdor� topology, even if all the elements of F

are Hausdor�. In fat, the in�mum of the family of all Hausdor� loally onvex topologies is the

indisrete topology.

Lemma 2. Let X be vetor spae, f : X → F linear funtional and p
1

, . . . , pn seminorms on X.

If |f | ≤ max{p
1

, . . . , pn}, then there exist linear funtionals f
1

, . . . , fn and numbers t
1

, . . . , tn ∈ [0, 1℄

satisfying

(i) |fj | ≤ pj for j = 1, . . . , n;

(ii) f = t
1

f
1

+ t
2

f
2

+ · · · + tnfn;

(iii) t
1

+ t
2

+ · · · + tn = 1.



Proposition 3. Let X be a vetor spae and let F ⊂ LC(X) be any nonempty subfamily. Then

(X, supF)

∗
= span

(

⋃

T ∈F

(X,T )

∗

)

, (X, inf F)

∗
=

⋂

T ∈F

(X,T )

∗.

De�nition. Let X be a vetor spae and M ⊂⊂ X#

.

• Denote

LC(X,M) = {T ∈ LC(X); (X,T )

∗
= M}.

If X is a loally onvex spae and M = X∗
, then the topologies from the family LC(X,X∗

) are

alled admissible topologies or topologies agreeing with the duality.

• By Proposition 3 the family LC(X,M) has the smallest and the largest element, i.e.,

inf LC(X,M) ∈ LC(X,M) and supLC(X,M).

The smallest element is alled the weak topology generated by M and is denoted by σ(X,M) (it

oinides with the weak topology from Setion II.1). The largest element is alled the Makey

topology generated by M , we will denote it by µ(X,M). (The symbol τ(X,M) is often used as

well.)

Lemma 4. Let (X,T ) be a LCS. Consider X∗
as a subspae of X#

and the topologies σ(X∗,X) on

X∗
and σ(X#,X) on X#

. Then:

(a) The topology σ(X#,X) is Hausdor�. The topology σ(X∗,X) oinides with the subspae topol-

ogy generated by σ(X#,X).

(b) If T is Hausdor�, then X∗
is a σ(X#,X)-dense subspae of X#

.

() Let A ⊂ X∗
. Then A is relatively ompat in (X∗, σ(X∗,X)) (i.e., its losure is ompat) if and

only if the following two onditions hold:

◦ A is σ(X∗,X)-bounded.

◦ A
σ(X#,X)

⊂ X∗
.

De�nition. Let X be a vetor spae.

• Let A ⊂ X#

be a σ(X#,X)-bounded set. By the symbol qA we will denote the seminorm on X

de�ned by

qA(x) = sup{|f(x)| ; f ∈ A}, x ∈ X.

• Let A be a nonempty family of σ(X#,X)-bounded subsets of X#

. By the topology of uniform

onvergene on elements of A we mean the loally onvex topology on X generated by the family

of seminorms {qA;A ∈ A}.

Lemma 5. Let X be a vetor spae, A ⊂ X#

a σ(X#,X)-bounded set and f ∈ X#

. Then

|f | ≤ qA ⇔ f ∈ aoA
σ(X#,X)

.

Theorem 6 (Makey-Arens). Let X be a vetor spae and M ⊂⊂ X#

. Then the topology µ(X,M)

oinides with the topology of uniform onvergene on absolutely onvex σ(M,X)-ompat subsets of

M .

Proposition 7. Let (X,T ) be a metrizable LCS. Then:

(a) (X∗, σ(X∗,X)) is σ-ompat.

(b) µ(X,X∗
) = T .

Corollary 8. Let X be a normed linear spae. Then the topology µ(X,X∗
) is the norm topology on

X.

Example 9. Let X be a Banah spae.

(1) The topology µ(X∗,X) oinides with the topology of uniform onvergene on absolutely onvex

weakly ompat subsets ofX. Moreover, the topology µ(X∗,X) oinides with the norm topology

on X if and only if X is reexive.

(2) Consider on X the topology of uniform onvergene on absolutely onvex weakly ompat subsets

of X∗
, denote it by ρ. Then ρ is an admissible topology on X, i.e., (X, ρ)∗ = X∗

.


