VII. $2 b w^{*}$-topology and Krein-Šmulyan theorem

Definition. Let X be normed linear space. We say that a set $A \subset X^{*}$ is $b w^{*}$-open if for each $r>0$ the set $A \cap r B_{X^{*}}$ is (relatively) w^{*}-open in $r B_{X^{*}}$.

Lemma 10. Let X be a normed linear space. Then the family of all the bw*-open subsets X^{*} is a topology, which is finer than the w^{*}-topology.

Definition. Let X be a normed linear space. Then the family of all the $b w^{*}$-open subsets X^{*} is called the $b w^{*}$-topology.

Proposition 11. Let X be a normed linear space. The bw*-topology on X^{*} coincides with the topology of uniform convergence on sequences in X, which are norm-convergent to zero.

Theorem 12 (Banach-Dieudonné). Let X be a normed linear space and let $\varkappa: X \rightarrow X^{* *}$ denote the canonical embedding. Then

$$
\left(X^{*}, b w^{*}\right)^{*}=\overline{\varkappa(X)} .
$$

In other words, the dual to $\left(X^{*}, b w^{*}\right)$ can be identified with the completion of X. In particular,

$$
\left(X^{*}, b w^{*}\right)^{*}=\varkappa(X) \Longleftrightarrow X \text { is complete. }
$$

Corollary 13 (Krein-Šmulyan). Let X be a Banach space and let $A \subset X^{*}$ be a convex set. Then

$$
A \text { is } w^{*} \text {-closed } \Longleftrightarrow \forall r>0: A \cap r B_{X^{*}} \text { is } w^{*} \text {-closed. }
$$

Corollary 14 (Banach-Dieudonné). Let X be a Banach space and let f be a linear functional on X^{*} (i.e., $f \in\left(X^{*}\right)^{\#}$. Then

$$
\left.f \in \varkappa(X) \Longleftrightarrow f\right|_{B_{X^{*}}} \text { is } w^{*} \text {-continuous. }
$$

Theorem 15. Let X be a Banach space. Denote $K=\left(B_{X^{*}}, w^{*}\right)$. Then K is a compact Hausdorff space. Define the mapping $J: X \rightarrow \mathcal{C}(K)$ by $J(x)=\left.\varkappa(x)\right|_{K}, x \in X$. Then J is a linear isometry of X into $\mathcal{C}(K)$, a homeomorphism of (X, w) into $\left(\mathcal{C}(K), \tau_{p}\right)$ and, moreover, $J(X)$ is τ_{p}-closed in $\mathcal{C}(K)$.
Remarks. Let X be a Banach space and $A \subset X^{*}$ a convex set. Then $\bar{A}^{w^{*}}=\bar{A}^{b w^{*}}$. However, it may happen that

$$
\bigcup_{r>0} \overline{A \cap r B_{X^{*}}}{ }^{w^{*}} \varsubsetneqq \bar{A}^{w^{*}},
$$

even it A is a subspace. This is illustrated by distingushing the following cases:
Let $Y \subset \subset X^{*}$. Define the seminorm \tilde{q}_{Y} na X předpisem

$$
\tilde{q}_{Y}(x)=\sup \{|f(x)| ; f \in Y \&\|f\| \leq 1\}
$$

i.e., $\tilde{q}_{Y}=q_{B_{X^{*}} \cap Y}$. Then the following hold:
(1) \tilde{q}_{Y} is a norm on $X \Longleftrightarrow \bar{Y}^{w^{*}}=X^{*}$.
(2) $\tilde{q}_{Y}=\|\cdot\| \Longleftrightarrow \overline{Y \cap B_{X^{*}}} w^{*}=B_{X^{*}}$. In this Y is said to be a 1-norming subspace X^{*}.
(3) \tilde{q}_{Y} is an equivalent norm on $X \Longleftrightarrow \exists r>0: \overline{Y \cap B_{X^{*}}} w^{*} \supset \frac{1}{r} B_{X^{*}}$
$\Longleftrightarrow \bigcup_{r>0} \overline{Y \cap r B_{X^{*}}} w^{*}=X^{*}$. In this Y is said to be a norming (or, more precisely, r-norming, where r is the number from the second condition) subspace of X^{*}.

