
VII.3 Compa
t 
onvex sets

Convention: In this se
tion we 
onsider only ve
tor spa
es over R. It 
auses

no harm, as all the de�nitions and results 
an be used for 
omplex spa
es as

well, be
ause only the stru
ture of the real version of the spa
e in question is

used.

De�nition. Let X be a ve
tor spa
e and let A ⊂ X be a 
onvex set. A point

x ∈ A is said to be an extreme point of A if it is not an interior point of any

segment in A, i.e., if

∀a, b ∈ A ∀t ∈ (0, 1) : x = ta+ (1− t)b ⇒ a = b = x.

The set of all extreme points of A is denoted by extA.

Remark. A point x ∈ A is an extreme point of a 
onvex set A if and only if it

is not the 
enter of any nondegenerate segment in A, i.e., if

∀a, b ∈ A : x =

1

2

(a+ b) ⇒ a = b = x.

Examples 16. Let X = R2

. Then:

(1) If A ⊂ R2

is a 
onvex polygon, then its extreme points are just its

verti
es.

(2) If A ⊂ R2

is a 
losed dis
, then extA is its boundary 
ir
le.

(3) If A ⊂ R2

is an open dis
, then extA = ∅.

De�nition. Let X be a ve
tor spa
e and let A ⊂ X be a 
onvex set. A subset

F ⊂ A is said to be a fa
e of A if the following two 
oditions are ful�lled:

◦ F is a nonempty 
onvex subset of A;

◦ ∀a, b ∈ A :

1

2

(a+ b) ∈ F ⇒ a ∈ F & b ∈ F.

Lemma 17 (properties of fa
es). Let X be a ve
tor spa
e and let A ⊂ X be

a 
onvex set.

(a) x ∈ A is an extreme point of A if and only if {x} is a fa
e of A.

(b) If F
1

⊂ A is a fa
e of A and F
2

⊂ F
1

is a fa
e of F
1

, then F
2

is a fa
e of

A.

(
) If, moreover, X is a HLCS and A is a 
ompa
t set 
ontaining at least

two points, then there is a 
losed fa
e F $ A.

Theorem 18 (Krein-Milman). Let X be a HLCS and let K ⊂ X be a 
onvex


ompa
t set. Then

K = 
o extK.

In parti
ular, extK 6= ∅ whenever K is nonempty.



Proposition 19 (Minkowski-Carath�eodory). Let X be a HLCS of dimension

n ∈ N and let K ⊂ X be a nonempty 
ompa
t 
onvex set. Then K = 
o extK.

Moreover, any point in K 
an be expressed by a 
onvex 
ombination of at

most n + 1 extreme points of K and these points 
an be 
hosen to be aÆnely

independent.

Example 20. LetK be a 
ompa
t Hausdor� spa
e and let P (K) be the set of

all Radon probabilities on K 
onsidered as a subset of (C(K)

∗, w∗
). Then P (K)

is a 
ompa
t 
onvex set and its extreme points are exa
tly Dira
 measures.

Proposition 21 (Milman). Let X be a HLCS and K ⊂ X a 
onvex 
ompa
t

set. If A ⊂ K is su
h that K = 
oA, then extK ⊂ A.

Proposition 22 (on the bary
enter of a measure). Let X be a HLCS and let

K ⊂ X be a 
ompa
t 
onvex set.

(a) For any µ ∈ P (K) there exists a unique x ∈ K satisfying

∀f : K → R 
ontinuous aÆne : f(x) =

∫
f dµ.

This x is said to be the bary
enter of µ and is denoted by r(µ).

(b) The mapping r : µ 7→ r(µ) is a 
ontinuous aÆne mapping of P (K) onto

K.

Theorem 23 (Krein-Milman theorem on integral representation). Let X be

a HLCS and let K ⊂ X be a 
ompa
t 
onvex set. Then for ea
h x ∈ K there

exists µ ∈ P (K) satisfying µ(extK) = 1 and x = r(µ).

Proposition 24. Let X be HLCS and let K ⊂ X be a 
ompa
t 
onvex set.

(a) If K is metrizable, then extK is a Gδ subset of K.

(b) If dimX ≤ 2, then extK is a 
losed subset K.

Remark. There is a 
ompa
t 
onvex subset K ⊂ R3

su
h that extK is not


losed.

Remark. The following Choquet theorem strengthens Theorem 23 in 
ase K

is metrizable:

Let X be a HLCS and let K ⊂ X be a metrizable 
ompa
t 
onvex set. Then

for ea
h x ∈ K there exists µ ∈ P (K) satisfying µ(extK) = 1 and x = r(µ).

There is another version of this theorem for nonmetrizable K, but its formu-

lation is more 
ompli
ated.


