
VII.3 Compat onvex sets

Convention: In this setion we onsider only vetor spaes over R. It auses

no harm, as all the de�nitions and results an be used for omplex spaes as

well, beause only the struture of the real version of the spae in question is

used.

De�nition. Let X be a vetor spae and let A ⊂ X be a onvex set. A point

x ∈ A is said to be an extreme point of A if it is not an interior point of any

segment in A, i.e., if

∀a, b ∈ A ∀t ∈ (0, 1) : x = ta+ (1− t)b ⇒ a = b = x.

The set of all extreme points of A is denoted by extA.

Remark. A point x ∈ A is an extreme point of a onvex set A if and only if it

is not the enter of any nondegenerate segment in A, i.e., if

∀a, b ∈ A : x =

1

2

(a+ b) ⇒ a = b = x.

Examples 16. Let X = R2

. Then:

(1) If A ⊂ R2

is a onvex polygon, then its extreme points are just its

verties.

(2) If A ⊂ R2

is a losed dis, then extA is its boundary irle.

(3) If A ⊂ R2

is an open dis, then extA = ∅.

De�nition. Let X be a vetor spae and let A ⊂ X be a onvex set. A subset

F ⊂ A is said to be a fae of A if the following two oditions are ful�lled:

◦ F is a nonempty onvex subset of A;

◦ ∀a, b ∈ A :

1

2

(a+ b) ∈ F ⇒ a ∈ F & b ∈ F.

Lemma 17 (properties of faes). Let X be a vetor spae and let A ⊂ X be

a onvex set.

(a) x ∈ A is an extreme point of A if and only if {x} is a fae of A.

(b) If F
1

⊂ A is a fae of A and F
2

⊂ F
1

is a fae of F
1

, then F
2

is a fae of

A.

() If, moreover, X is a HLCS and A is a ompat set ontaining at least

two points, then there is a losed fae F $ A.

Theorem 18 (Krein-Milman). Let X be a HLCS and let K ⊂ X be a onvex

ompat set. Then

K = o extK.

In partiular, extK 6= ∅ whenever K is nonempty.



Proposition 19 (Minkowski-Carath�eodory). Let X be a HLCS of dimension

n ∈ N and let K ⊂ X be a nonempty ompat onvex set. Then K = o extK.

Moreover, any point in K an be expressed by a onvex ombination of at

most n + 1 extreme points of K and these points an be hosen to be aÆnely

independent.

Example 20. LetK be a ompat Hausdor� spae and let P (K) be the set of

all Radon probabilities on K onsidered as a subset of (C(K)

∗, w∗
). Then P (K)

is a ompat onvex set and its extreme points are exatly Dira measures.

Proposition 21 (Milman). Let X be a HLCS and K ⊂ X a onvex ompat

set. If A ⊂ K is suh that K = oA, then extK ⊂ A.

Proposition 22 (on the baryenter of a measure). Let X be a HLCS and let

K ⊂ X be a ompat onvex set.

(a) For any µ ∈ P (K) there exists a unique x ∈ K satisfying

∀f : K → R ontinuous aÆne : f(x) =

∫
f dµ.

This x is said to be the baryenter of µ and is denoted by r(µ).

(b) The mapping r : µ 7→ r(µ) is a ontinuous aÆne mapping of P (K) onto

K.

Theorem 23 (Krein-Milman theorem on integral representation). Let X be

a HLCS and let K ⊂ X be a ompat onvex set. Then for eah x ∈ K there

exists µ ∈ P (K) satisfying µ(extK) = 1 and x = r(µ).

Proposition 24. Let X be HLCS and let K ⊂ X be a ompat onvex set.

(a) If K is metrizable, then extK is a Gδ subset of K.

(b) If dimX ≤ 2, then extK is a losed subset K.

Remark. There is a ompat onvex subset K ⊂ R3

suh that extK is not

losed.

Remark. The following Choquet theorem strengthens Theorem 23 in ase K

is metrizable:

Let X be a HLCS and let K ⊂ X be a metrizable ompat onvex set. Then

for eah x ∈ K there exists µ ∈ P (K) satisfying µ(extK) = 1 and x = r(µ).

There is another version of this theorem for nonmetrizable K, but its formu-

lation is more ompliated.


