V. 2 The notion of an unbounded operator between Banach spaces

Definition. Let X and Y be Banach spaces over \mathbb{F}.

- By an operator from X to Y we mean a linear mapping $T: D(T) \rightarrow Y$, where $D(T)$ (the domain of the operator T) is a vector subspace of X.
- The range of the operator T, i.e. the set $T(D(T))$, is denoted by $R(T)$.
- An operator T from X to Y is called densely defined, if its domain $D(T)$ is dense in X.
- By the graph of an operator T we mean the set

$$
G(T)=\{(x, y) \in X \times Y: x \in D(T) \& T x=y\} .
$$

- An operator T is said to be closed if its graph $G(T)$ is a closed subset of $X \times Y$, i.e., if for any sequence $\left(x_{n}\right)$ in $D(T)$ satisfying
- $x_{n} \rightarrow x$ for some $x \in X$,
- $T x_{n} \rightarrow y$ for some $y \in Y$; one has $x \in D(T)$ and $T x=y$.
- Let S and T be operators from X to Y. We write $S \subset T$ if $G(S) \subset G(T)$; i.e., if $D(S) \subset D(T)$ and $T x=S x$ for each $x \in D(S)$. The operator T is then called an extension of the operator S.
- Let S and T be operators from X to Y. By their sum we mean the operator $S+T$ with domain $D(S+T)=D(S) \cap D(T)$ defined by the formula $(S+T) x=S x+T x$ for $x \in D(T+S)$.
- Let T be an operator from X to Y and $\alpha \in \mathbb{F}$. If $\alpha=0$, by αT we mean the zero operator defined on X; if $\alpha \neq 0$, by αT we mean the operator defined by the formula $(\alpha T) x=\alpha \cdot T x$ on $D(\alpha T)=D(T)$.
- Let T be an operator from X to Y, let S be an operator from Y to a Banach space Z. By their composition we mean the operator $S T$ with domain

$$
D(S T)=\{x \in D(T): T x \in D(S)\}
$$

defined by the formula $(S T)(x)=S(T(x))$ for $x \in D(S T)$.

- If T is a one-to-one operator from X to Y, by the inverse operator of T we mean the operator T^{-1} from Y to X, whose domain is $D\left(T^{-1}\right)=R(T)$ and which is the inverse mapping of T.

Examples 12.

(1) Let $D(T)=\mathcal{C}^{1}([0,1]) \subset \subset \mathcal{C}([0,1])$ and let $T(f)=f^{\prime}$ for $f \in D(T)$. Then T is a closed densely defined operator from $\mathcal{C}([0,1])$ to $\mathcal{C}([0,1])$.
(2) Let $D(U)=\left\{f \in \mathcal{C}^{1}([0,1]) ; f^{\prime}(0)=0\right\} \subset \subset \mathcal{C}([0,1])$ and let $U(f)=f^{\prime}$ for $f \in D(U)$. Then U is a closed densely defined operator from $\mathcal{C}([0,1])$ to $\mathcal{C}([0,1])$ and, moreover, $U \varsubsetneqq T$, where T is the operator from (1).
(3) Let $D(S)$ be the subspace $\mathcal{C}([0,1])$ consisting of all the polynomials and let $S(f)=f^{\prime}$ for $f \in D(S)$. Then T is a densely defined operator from $\mathcal{C}([0,1])$ to $\mathcal{C}([0,1])$, which is not closed, but has a closed extension (the operator T from (1)).
(4) Let $D(T)$ be a subspace of ℓ^{2} made by the vector with finitely many nonzero coordinates. For $x=\left(x_{n}\right) \in D(T)$ set $T x=\left(\sum_{n=1}^{\infty} x_{n}, 0,0, \ldots\right)$. Then T is a densely defined operator from ℓ^{2} to ℓ^{2}, which has no closed extension.

Lemma 13 (on the graph of an operator). A subset $L \subset X \times Y$ is the graph of an operator from X to Y if and only if it is a linear subspace satisfying

$$
\{(x, y) \in L: x=0\}=\{(0,0)\} .
$$

Proposition 14. For operators R, S, T between Banach spaces (for which the given operations are defined) one has:
(i) $(R+S)+T=R+(S+T)$;
(ii) $(R S) T=R(S T)$;
(iii) $(R+S) T=R T+S T$ and $T(R+S) \supset T R+T S$. If T is everywhere defined, then $T(R+S)=T R+T S$.

Proposition 15 (on closed operators). Let T be an operator from X to Y.
(a) If T is closed and $D(T)=X$, then $T \in L(X, Y)$.
(b) T has a closed extension if and only if $\left(x_{n}, T x_{n}\right) \rightarrow(0, y)$ in $D(T) \times Y$ implies $y=0$.
(c) If T is closed and one-to-one, then T^{-1} is closed as well.

Notation. If T is an operator from X to Y, which has a closed extension, by the symbol \bar{T} we denote its minimal closed extension, i.e., the operator whose graph $G(\bar{T})$ is $\overline{G(T)}$, the closure of the graph of T in $X \times Y$.
Proposition 16. Let T be a closed operator from X to Y. Then:
(a) If $S \in L(X, Y)$, then $S+T$ is a closed operator and $D(S+T)=D(T)$.
(b) If $S \in L(Y, Z)$, then $D(S T)=D(T)$. If S is, moreover, an isomorphism of Y into Z, then $S T$ is closed.
(c) If $S \in L(Z, X)$, then $T S$ is closed.

Examples 17.

(1) Let $X=\mathcal{C}([0,1]), D(T)=\mathcal{C}^{1}([0,1]), T(f)=f^{\prime}$ for $f \in D(T)$ and $S f=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(\frac{1}{n}\right)$ for $f \in \mathcal{C}([0,1])$ (the result is a constant function). Then T is densely defined and closed, $S \in L(X)$, but $S T$ has no closed extension.
(2) Let $X=\ell^{2}, Y=\left\{\left(x_{n}\right) \in \ell^{2} ; \sum_{n=1}^{\infty}\left|n x_{n}\right|^{2}<\infty\right\}$. For $\left(x_{n}\right) \in Y$ set

$$
\begin{aligned}
T\left(\left(x_{n}\right)\right) & =\left(0, x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right), \\
S\left(\left(x_{n}\right)\right) & =\left(\sum_{n=1}^{\infty} x_{n},-x_{1},-2 x_{2},-3 x_{3}, \ldots\right) .
\end{aligned}
$$

Then S and T are densely defined closed operators, but $S+T$ has no closed extension.
Proposition 18 (on the inverse to a closed operator). Let T be a one-to-one closed operator from X to Y. The following assertions are equivalent:
(i) $R(T)=Y$ and $T^{-1} \in L(Y, X)$.
(ii) $R(T)=Y$.
(iii) $R(T)$ is dense in Y and T^{-1} is continuous on $R(T)$.

Remark. For non-closed operators the assertions from the previous proposition are not equivalent. More precisely: If T is an operator from X to Y, which is not closed, then:

- The assertion (i) cannot hold.
- The assertion (ii) may hold. If it holds, then neither (i) nor (iii) hold. In this case T may or may not have a closed extension. If it has a closed extension, then the operator \bar{T} is not one-to-one.
- The assertion (iii) may hold. If it holds, then neither (i) nor (ii) hold.In this case T may or may not have a closed extension. If it has a closed extension, then the operator \bar{T} satisfies the equivalent conditions from the previous proposition.

