
V.2 The notion of an unbounded operator between Banah spaes

De�nition. Let X and Y be Banah spaes over F.

• By an operator from X to Y we mean a linear mapping T : D(T ) → Y , where D(T ) (the

domain of the operator T ) is a vetor subspae of X .

• The range of the operator T , i.e. the set T (D(T )), is denoted by R(T ).

• An operator T from X to Y is alled densely de�ned, if its domain D(T ) is dense in X .

• By the graph of an operator T we mean the set

G(T ) = {(x, y) ∈ X × Y : x ∈ D(T ) & Tx = y}.

• An operator T is said to be losed if its graph G(T ) is a losed subset of X × Y , i.e., if

for any sequene (xn) in D(T ) satisfying

◦ xn → x for some x ∈ X ,

◦ Txn → y for some y ∈ Y ;

one has x ∈ D(T ) and Tx = y.

• Let S and T be operators from X to Y . We write S ⊂ T if G(S) ⊂ G(T ); i.e., if

D(S) ⊂ D(T ) and Tx = Sx for eah x ∈ D(S). The operator T is then alled an

extension of the operator S.

• Let S and T be operators from X to Y . By their sum we mean the operator S + T

with domain D(S + T ) = D(S) ∩D(T ) de�ned by the formula (S + T )x = Sx+ Tx for

x ∈ D(T + S).

• Let T be an operator from X to Y and α ∈ F. If α = 0, by αT we mean the zero

operator de�ned on X ; if α 6= 0, by αT we mean the operator de�ned by the formula

(αT )x = α · Tx on D(αT ) = D(T ).

• Let T be an operator from X to Y , let S be an operator from Y to a Banah spae Z.

By their omposition we mean the operator ST with domain

D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}

de�ned by the formula (ST )(x) = S(T (x)) for x ∈ D(ST ).

• If T is a one-to-one operator from X to Y , by the inverse operator of T we mean the

operator T−1
from Y to X , whose domain is D(T−1

) = R(T ) and whih is the inverse

mapping of T .

Examples 12.

(1) Let D(T ) = C1([0, 1℄) ⊂⊂ C([0, 1℄) and let T (f) = f ′
for f ∈ D(T ). Then T is a losed

densely de�ned operator from C([0, 1℄) to C([0, 1℄).
(2) Let D(U) = {f ∈ C1([0, 1℄); f ′

(0) = 0} ⊂⊂ C([0, 1℄) and let U(f) = f ′
for f ∈ D(U).

Then U is a losed densely de�ned operator from C([0, 1℄) to C([0, 1℄) and, moreover,

U $ T , where T is the operator from (1).

(3) Let D(S) be the subspae C([0, 1℄) onsisting of all the polynomials and let S(f) = f ′

for f ∈ D(S). Then T is a densely de�ned operator from C([0, 1℄) to C([0, 1℄), whih is

not losed, but has a losed extension (the operator T from (1)).

(4) Let D(T ) be a subspae of ℓ2 made by the vetor with �nitely many nonzero oordinates.

For x = (xn) ∈ D(T ) set Tx = (

∑
∞

n=1
xn, 0, 0, . . . ). Then T is a densely de�ned operator

from ℓ2 to ℓ2, whih has no losed extension.

Lemma 13 (on the graph of an operator). A subset L ⊂ X × Y is the graph of an operator

from X to Y if and only if it is a linear subspae satisfying

{(x, y) ∈ L : x = 0} = {(0, 0)}.



Proposition 14. For operators R, S, T between Banah spaes (for whih the given opera-

tions are de�ned) one has:

(i) (R+ S) + T = R+ (S + T );

(ii) (RS)T = R(ST );

(iii) (R + S)T = RT + ST and T (R + S) ⊃ TR + TS. If T is everywhere de�ned, then

T (R+ S) = TR + TS.

Proposition 15 (on losed operators). Let T be an operator from X to Y .

(a) If T is losed and D(T ) = X , then T ∈ L(X, Y ).

(b) T has a losed extension if and only if (xn, Txn) → (0, y) in D(T )× Y implies y = 0.

() If T is losed and one-to-one, then T−1
is losed as well.

Notation. If T is an operator from X to Y , whih has a losed extension, by the symbol T we

denote its minimal losed extension, i.e., the operator whose graph G(T ) is G(T ), the losure

of the graph of T in X × Y .

Proposition 16. Let T be a losed operator from X to Y . Then:

(a) If S ∈ L(X, Y ), then S + T is a losed operator and D(S + T ) = D(T ).

(b) If S ∈ L(Y, Z), then D(ST ) = D(T ). If S is, moreover, an isomorphism of Y into Z,

then ST is losed.

() If S ∈ L(Z,X), then TS is losed.

Examples 17.

(1) Let X = C([0, 1℄), D(T ) = C1([0, 1℄), T (f) = f ′
for f ∈ D(T ) and Sf =

∑
∞

n=1

1
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n
f( 1

n
)

for f ∈ C([0, 1℄) (the result is a onstant funtion). Then T is densely de�ned and losed,

S ∈ L(X), but ST has no losed extension.

(2) Let X = ℓ2, Y = {(xn) ∈ ℓ2;
∑

∞

n=1
|nxn|

2

< ∞}. For (xn) ∈ Y set

T ((xn)) = (0, x
1

, 2x
2

, 3x
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, . . . ),

S((xn)) = (

∞∑

n=1

xn,−x
1

,−2x
2

,−3x
3

, . . . ).

Then S and T are densely de�ned losed operators, but S + T has no losed extension.

Proposition 18 (on the inverse to a losed operator). Let T be a one-to-one losed operator

from X to Y . The following assertions are equivalent:

(i) R(T ) = Y and T−1 ∈ L(Y,X).

(ii) R(T ) = Y .

(iii) R(T ) is dense in Y and T−1
is ontinuous on R(T ).

Remark. For non-losed operators the assertions from the previous proposition are not equiv-

alent. More preisely: If T is an operator from X to Y , whih is not losed, then:

• The assertion (i) annot hold.

• The assertion (ii) may hold. If it holds, then neither (i) nor (iii) hold. In this ase T

may or may not have a losed extension. If it has a losed extension, then the operator

T is not one-to-one.

• The assertion (iii) may hold. If it holds, then neither (i) nor (ii) hold.In this ase T may

or may not have a losed extension. If it has a losed extension, then the operator T

satis�es the equivalent onditions from the previous proposition.


