V.3 Spectrum of an unbounded operator

Convention. In this section we consider only Banach spaces over \mathbb{C} .

Definition.

- Let X be a Banach space. By an **operator on** X we mean an operator from X to X.
- Let T be an operator on X.
 - By the resolvent set of the operator T we mean the set of all $\lambda \in \mathbb{C}$, for which the operator $\lambda I T$ is one-to-one, onto and $(\lambda I T)^{-1} \in L(X)$. It is denoted by $\rho(T)$.
 - $\circ\,$ By the resolvent function of the operator T we mean the mapping

$$\lambda \mapsto R(\lambda, T) = (\lambda I - T)^{-1}, \qquad \lambda \in \rho(T).$$

• By the spectrum of the operator T we mean the set $\sigma(T) = \mathbb{C} \setminus \rho(T)$.

Remarks.

- (1) If T is not closed, then $\rho(T) = \emptyset$ and $\sigma(T) = \mathbb{C}$.
- (2) The resolvent set is sometimes defined in a different way. Sometimes it is required
 (a) just that the operator λI T is one-to-one and onto;
 - sometimes it is required
 - (b) that the operator $\lambda I A$ is one-to-one, its range is dense and the inverse operator is continuous.

If T closed, then all three definitions coincide; for non-closed operators they give different notions. If the operator T is not closed, but has a closed extension, then its resolvent set according to (b) equals the resolvent set of \overline{T} ; the resolvent set according to (a) is disjoint with the resolvent set of \overline{T} .

Proposition 19 (properties of resolvent function, resolvent set and spectrum). Let T be an operator on X.

(a) Let $\mu \in \rho(T)$. Then for for $\lambda \in \mathbb{C}$, $|\lambda - \mu| < \frac{1}{\|(\mu I - T)^{-1}\|}$ one has $\lambda \in \rho(T)$ and

$$(\lambda I - T)^{-1} = \sum_{n=0}^{\infty} (-1)^n (\lambda - \mu)^n ((\mu I - T)^{-1})^{n+1}.$$

- (b) $\rho(T)$ is an open subset of \mathbb{C} and $\sigma(T)$ is a closed subset of \mathbb{C} .
- (c) The resolvent function $\lambda \mapsto (\lambda I T)^{-1}$ is continuous on $\rho(T)$.
- (d) For any $f \in X^*$ and $x \in X$ the function $\lambda \mapsto f((\lambda I T)^{-1}x)$ is holomorphic on $\rho(T)$.

Lemma 20 (empty spectrum and T^{-1}). If T is a closed operator on X such that $\sigma(T) = \emptyset$, then $T^{-1} \in L(X)$ and $\sigma(T^{-1}) = \{0\}$.