VI.2 Integral with respect to a spectral measure

Definition. An abstract spectral measure in a Hilbert space H is a mapping E with the following properties:

- (i) The domain of E is a σ -algebra \mathcal{A} of subsets of \mathbb{C} containing all Borel sets.
- (ii) E(A) is an orthogonal projection on H for each $A \in \mathcal{A}$.
- (iii) $E(\emptyset) = 0, E(\mathbb{C}) = I.$
- (iv) If $A \in \mathcal{A}$ satisfies E(A) = 0, then $B \in \mathcal{A}$ (and E(B) = 0) for each $B \subset A$.
- (v) $E(A \cap B) = E(A)E(B)$ for $A, B \in \mathcal{A}$.
- (vi) $E(A \cup B) = E(A) + E(B)$ whenever $A, B \in \mathcal{A}, A \cap B = \emptyset$.
- (vii) For each pair $x, y \in H$ the mapping $E_{x,y} : A \mapsto \langle E(A)x, y \rangle$ is a complex Borel measure on \mathbb{C} .

The spectral measure E is called **compactly supported** if there is a compact set $K \subset \mathbb{C}$ such that $E(\mathbb{C} \setminus K) = 0.$

Recall that μ is a **Borel measure** if it is a σ -additive measure defined on a σ -algebra \mathcal{A}_{μ} containing all Borel sets such that for any $A \in \mathcal{A}_{\mu}$ there are Borel sets B, C such that $B \subset A \subset C$ and $|\mu|(B \setminus C) = 0$.

Lemma 5. If $T \in L(H)$ is a normal operator, then E_T is a compactly supported abstract spectral measure.

Lemma 6 (properties of a spectral measure). Let E be an abstract spectral measure in a Hilbert space H defined on a σ -algebra A. Then the following holds:

- (a) The mapping $x \mapsto E_{x,y}$ is linear for each $y \in H$.
- (b) The mapping $y \mapsto E_{x,y}$ is conjugate linear for each $x \in H$.
- (c) $E_{y,x} = E_{x,y}$ for $x, y \in H$.
- (d) $E_{x,x}$ is a nonnegative measure for each $x \in H$.
- (e) $E_{x,y} = \frac{1}{4} (E_{x+y,x+y} E_{x-y,x-y} + iE_{x+iy,x+iy} iE_{x-iy,x-iy})$ for $x, y \in H$. (f) $|E_{x,y}(A)| \le \sqrt{E_{x,x}(A) \cdot E_{y,y}(A)} \le \frac{1}{2} (E_{x,x}(A) + E_{y,y}(A))$ for $x, y \in H$ and $A \in \mathcal{A}$.
- (g) $E_{x+y,x+y} \le 2(E_{x,x} + E_{y,y})$ for $x, y \in H$.
- (h) $||E_{x,y}|| \le ||x|| \cdot ||y||$ for $x, y \in H$.

Remark. In the definition of an abstract spectral measure, in (vii) it is enough to assume that $E_{x,x}$ is a Borel measure on \mathbb{C} for any $x \in H$.

Proposition 7. Let E be an abstract spectral measure in a separable Hilbert space H. Then for any $A \in \mathcal{A}$ there are Borel sets B and C such that $B \subset A \subset C$ and $E(C \setminus B) = 0$.

Remark. Spectral measure is sometimes defined only for separable Hilbert spaces H. Then it is defined only on the σ -algebra of Borel sets and the condition (iv) is omitted. For nonseparable H the above approach is necessary.

Definition. Let E be an abstract spectral measure in a Hilbert space H defined on a σ -algebra \mathcal{A} .

- Set $\mathcal{N} = \{A \in \mathcal{A}; E(A) = 0\}.$
- We denote by $L^{\infty}(E)$ the space of all bounded \mathcal{A} -measurable functions on \mathcal{C} , where we identify functions, which are equal except on a set from \mathcal{N} (i.e., *E*-almost everywhere). Equip $L^{\infty}(E)$ the the norm

$$||f|| = \operatorname{ess\,sup}_{\lambda \in \mathbb{C}} |f(\lambda)| = \inf\{c > 0; \{\lambda \in \mathbb{C}; f(\lambda) > c\} \in \mathcal{N}\}.$$

Then $L^{\infty}(E)$ is a commutative C^{*}-algebra (with pointwise multiplication and involution defined as complex conjugation).

Theorem 8 (integral of a bounded function with respect to a spectral measure). If E is an abstract spectral measure in H defined on a σ -albegra A and $f: \mathbb{C} \to \mathbb{C}$ is a bounded A-measurable function, then there is a unique operator $\Phi_0(f) \in L(H)$ such that

$$\langle \Phi_0(f)x, y \rangle = \int f \, \mathrm{d}E_{x,y} \qquad x, y \in H$$

Moreover:

- (a) Φ_0 is an isometric *-isomorphism of the C*-algebra $L^{\infty}(E)$ into L(H).
- (b) $\sigma(\Phi_0(f)) = \operatorname{ess\,rng}(f)$ for each $f \in L^{\infty}(E)$.
- (c) For any $f \in L^{\infty}(E)$ the operator $\Phi_0(f)$ is normal. Moreover $\Phi_0(f)$ is self-adjoint if and only if f is real-valued (E-almost everywhere) and $\Phi_0(f)$ is positive if and only if $f \ge 0$ E-almost everywhere.
- (d) $\|\Phi_0(f)x\| = \sqrt{\int |f|^2 dE_x}$ for $x \in H$. (e) If $f \in L^{\infty}(E)$ and $g \in \mathcal{C}(\sigma(\Phi_0(f)))$, then $\Phi_0(g \circ f) = \tilde{g}(\Phi_0(f))$.

Notation: The operator $\Phi_0(f)$ from the previous theorem is denoted by $\int f \, dE$ and is called the integral of the function f with respect to the spectral measure E.

Let E be an abstract spectral measure, $f \in L^{\infty}(E)$ and $T = \int f \, dE$. Then the Lemma 9. spectral measure E_T of T is given by $E_T(A) = E(f^{-1}(A))$.

Corollary 10 (spectral decomposition of a bounded normal operator). Let H be a Hilbert space and $T \in L(H)$ a normal operator. Then there is a unique abstract spectral measure such that $T = \int \mathrm{id} \, \mathrm{d}E$. Moreover, this is the measure E_T .

Theorem 11 (integral of a (not necessarily bounded) function with respect to a spectral measure). Let E be an abstract spectral measure in H defined on a σ -albegra \mathcal{A} , let $f: \mathbb{C} \to \mathbb{C}$ be an \mathcal{A} -measurable function. Set

$$D(\Phi(f)) = \{ x \in H : \int |f|^2 \, \mathrm{d}E_{x,x} < \infty \}.$$

Then $D(\Phi(f))$ is a dense linear subspace of H. Further, there exists a unique operator $\Phi(f)$ on H with domain $D(\Phi(f))$ satisfying.

$$\langle \Phi(f)x,y\rangle = \int f \,\mathrm{d}E_{x,y}, \qquad x,y \in D(\Phi(f)).$$

Moreover,

$$\|\Phi(f)x\| = \sqrt{\int |f|^2 dE_{x,x}}, \qquad x \in D(\Phi(f)).$$

Remark: If f is bounded, then $D(\Phi(f)) = H$ and $\Phi(f) = \Phi_0(f)$.

Notation: The operator $\Phi(f)$ from the previous theorem is denoted by $\int f dE$ and is called the integral of the function f with respect to the spectral measure E.

Theorem 12 (properties of $\int f dE$). If E is an abstract spectral measure in H and f, g are \mathcal{A} -measurable functions, then:

- (a) $\Phi(f) + \Phi(g) \subset \Phi(f+g);$
- (b) $\Phi(f)\Phi(g) \subset \Phi(fg)$ and $D(\Phi(f)\Phi(g)) = D(\Phi(g)) \cap D(\Phi(fg))$.
- (c) $\Phi(f)^* = \Phi(\overline{f})$ and $\Phi(f)\Phi(f)^* = \Phi(|f|^2) = \Phi(f)^*\Phi(f)$, in particular $\Phi(f)$ is normal.
- (d) $\Phi(f)$ is a closed operator.
- (e) $\Phi(f)$ is continuous if and only if f is essentially bounded, i.e., there exists $A \in \mathcal{A}$, such that $E(\mathbb{C} \setminus A) = 0$ and f is bounded on A.

Proposition 13 (spectrum of $\int f dE$). If E is an abstract spectral measure, f is an Ameasurable function and $T = \inf f \, dE$, then

$$\sigma(T) = \operatorname{ess\,rng}(f) := \mathbb{C} \setminus \bigcup \{ G \subset \mathbb{C} : G \text{ open, } E(f^{-1}(G)) = 0 \}.$$

Moreover, for any $\lambda \in \mathbb{C}$ we have $\ker(\lambda I - T) = R(E(f^{-1}(\{\lambda\})))$. In particular, λ is an eigenvalue of T if and only if $E(f^{-1}(\{\lambda\})) \neq 0$.