
VI.2 Integral with respet to a spetral measure

De�nition. An abstrat spetral measure in a Hilbert spae H is a mapping E with the following

properties:

(i) The domain of E is a σ-algebra A of subsets of C ontaining all Borel sets.

(ii) E(A) is an orthogonal projetion on H for eah A ∈ A.

(iii) E(∅) = 0, E(C) = I.

(iv) If A ∈ A satis�es E(A) = 0, then B ∈ A (and E(B) = 0) for eah B ⊂ A.

(v) E(A ∩B) = E(A)E(B) for A,B ∈ A.

(vi) E(A ∪B) = E(A) +E(B) whenever A,B ∈ A, A ∩B = ∅.
(vii) For eah pair x, y ∈ H the mapping Ex,y : A 7→ 〈E(A)x, y〉 is a omplex Borel measure

on C.

The spetral measure E is alled ompatly supported if there is a ompat set K ⊂ C suh that

E(C \K) = 0.

Reall that µ is a Borel measure if it is a σ-additive measure de�ned on a σ-algebra Aµ

ontaining all Borel sets suh that for any A ∈ Aµ there are Borel sets B,C suh that B ⊂ A ⊂ C

and |µ| (B \ C) = 0.

Lemma 5. If T ∈ L(H) is a normal operator, then ET is a ompatly supported abstrat

spetral measure.

Lemma 6 (properties of a spetral measure). Let E be an abstrat spetral measure in a

Hilbert spae H de�ned on a σ-algebra A. Then the following holds:

(a) The mapping x 7→ Ex,y is linear for eah y ∈ H.

(b) The mapping y 7→ Ex,y is onjugate linear for eah x ∈ H.

() Ey,x = Ex,y for x, y ∈ H.

(d) Ex,x is a nonnegative measure for eah x ∈ H.

(e) Ex,y =
1

4

(Ex+y,x+y −Ex−y,x−y + iEx+iy,x+iy − iEx−iy,x−iy) for x, y ∈ H.

(f) |Ex,y(A)| ≤
√

Ex,x(A) · Ey,y(A) ≤
1

2

(Ex,x(A) +Ey,y(A)) for x, y ∈ H and A ∈ A.

(g) Ex+y,x+y ≤ 2(Ex,x + Ey,y) for x, y ∈ H.

(h) ‖Ex,y‖ ≤ ‖x‖ · ‖y‖ for x, y ∈ H.

Remark. In the de�nition of an abstrat spetral measure, in (vii) it is enough to assume that

Ex,x is a Borel measure on C for any x ∈ H.

Proposition 7. Let E be an abstrat spetral measure in a separable Hilbert spae H. Then

for any A ∈ A there are Borel sets B and C suh that B ⊂ A ⊂ C and E(C \B) = 0.

Remark. Spetral measure is sometimes de�ned only for separable Hilbert spaes H. Then it

is de�ned only on the σ-algebra of Borel sets and the ondition (iv) is omitted. For nonseparable

H the above approah is neessary.

De�nition. Let E be an abstrat spetral measure in a Hilbert spae H de�ned on a σ-algebra

A.

• Set N = {A ∈ A;E(A) = 0}.
• We denote by L∞

(E) the spae of all bounded A-measurable funtions on C, where we

identify funtions, whih are equal exept on a set from N (i.e., E-almost everywhere).

Equip L∞
(E) the the norm

‖f‖ = ess sup

λ∈C

|f(λ)| = inf{c > 0; {λ ∈ C; f(λ) > c} ∈ N}.

Then L∞
(E) is a ommutative C∗

-algebra (with pointwise multipliation and involution

de�ned as omplex onjugation).



Theorem 8 (integral of a bounded funtion with respet to a spetral measure). If E is

an abstrat spetral measure in H de�ned on a σ-albegra A and f : C → C is a bounded

A-measurable funtion, then there is a unique operator �

0

(f) ∈ L(H) suh that

〈�
0

(f)x, y〉 =

∫

f dEx,y x, y ∈ H.

Moreover:

(a) �

0

is an isometri ∗-isomorphism of the C∗
-algebra L∞

(E) into L(H).

(b) σ(�
0

(f)) = ess rng(f) for eah f ∈ L∞
(E).

() For any f ∈ L∞
(E) the operator �

0

(f) is normal. Moreover �

0

(f) is self-adjoint if and

only if f is real-valued (E-almost everywhere) and �

0

(f) is positive if and only if f ≥ 0

E-almost everywhere.

(d) ‖�
0

(f)x‖ =
√

∫

|f |2 dEx for x ∈ H.

(e) If f ∈ L∞
(E) and g ∈ C(σ(�

0

(f))), then �

0

(g ◦ f) = ~g(�
0

(f)).

Notation: The operator �

0

(f) from the previous theorem is denoted by

∫

f dE and is alled

the integral of the funtion f with respet to the spetral measure E.

Lemma 9. Let E be an abstrat spetral measure, f ∈ L∞
(E) and T =

∫

f dE. Then the

spetral measure ET of T is given by ET (A) = E(f−1
(A)).

Corollary 10 (spetral deomposition of a bounded normal operator). Let H be a Hilbert

spae and T ∈ L(H) a normal operator. Then there is a unique abstrat spetral measure suh

that T =

∫

id dE. Moreover, this is the measure ET .

Theorem 11 (integral of a (not neessarily bounded) funtion with respet to a spetral mea-

sure). Let E be an abstrat spetral measure in H de�ned on a σ-albegra A, let f : C → C

be an A-measurable funtion. Set

D(�(f)) = {x ∈ H :

∫

|f |2 dEx,x < ∞}.

Then D(�(f)) is a dense linear subspae of H. Further, there exists a unique operator �(f)

on H with domain D(�(f)) satisfying.

〈�(f)x, y〉 =

∫

f dEx,y, x, y ∈ D(�(f)).

Moreover,

‖�(f)x‖ =

√

∫

|f |2 dEx,x, x ∈ D(�(f)).

Remark: If f is bounded, then D(�(f)) = H and �(f) = �

0

(f).

Notation: The operator �(f) from the previous theorem is denoted by

∫

f dE and is alled

the integral of the funtion f with respet to the spetral measure E.

Theorem 12 (properties of

∫

f dE). If E is an abstrat spetral measure in H and f, g are

A-measurable funtions, then:

(a) �(f) + �(g) ⊂ �(f + g);

(b) �(f)�(g) ⊂ �(fg) and D(�(f)�(g)) = D(�(g)) ∩D(�(fg)).

() �(f)∗ = �(f) and �(f)�(f)∗ = �(|f |2) = �(f)∗�(f), in partiular �(f) is normal.

(d) �(f) is a losed operator.

(e) �(f) is ontinuous if and only if f is essentially bounded, i.e., there exists A ∈ A, suh

that E(C \A) = 0 and f is bounded on A.

Proposition 13 (spetrum of

∫

f dE). If E is an abstrat spetral measure, f is an A-

measurable funtion and T = inf f dE, then

σ(T ) = ess rng(f) := C \
⋃

{G ⊂ C : G open, E(f−1
(G)) = 0}.

Moreover, for any λ ∈ C we have ker(λI − T ) = R(E(f−1
({λ}))). In partiular, λ is an

eigenvalue of T if and only if E(f−1
({λ})) 6= 0.


