FUNCTIONAL ANALYSIS 2

SUMMER SEMESTER 2021/2022

PROBLEMS TO CHAPTER VI

PROBLEMS TO SECTION VI.1 – MEASURABLE CALCULUS FOR BOUNDED NORMAL OPERATORS

Problem 1. Let $H = \ell^2$ and let $\boldsymbol{z} = (z_n)$ be a bounded sequence of complex numbers. For $\boldsymbol{x} = (x_n) \in H$ set $M_{\boldsymbol{z}}(\boldsymbol{x}) = (z_n x_n)$. We know (from Problem 14 to Chapter V) that $M_{\boldsymbol{z}}$ is a bounded normal operator, $\|M_{\boldsymbol{z}}\| = \|\boldsymbol{z}\|_{\infty}$ and $\sigma(M_{\boldsymbol{z}}) = \overline{\{z_n; n \in \mathbb{N}\}}$.

- (1) Let $f \in \mathcal{C}(\sigma(M_{\boldsymbol{z}}))$. Show that $\widetilde{f}(M_{\boldsymbol{z}}) = M_{f \circ \boldsymbol{z}}$, where $f \circ \boldsymbol{z} = (f(z_n))$.
- (2) Let (e_n) be the canonical orthonormal basis of H. Show that $E_{e_n,e_n} = \delta_{z_n}$ (the Dirac measure supported by z_n) and $E_{e_n,e_m} = 0$ for $m, n \in \mathbb{N}, m \neq n$.
- (3) Let $\boldsymbol{x} = (x_n) \in H$ and $\boldsymbol{y} = (y_n) \in H$. Show that $E_{\boldsymbol{x},\boldsymbol{y}} = \sum_{n=1}^{\infty} x_n \overline{y_n} \delta_{z_n}$.
- (4) Deduce that \mathcal{A} , the domain σ -algebra of the spectral measure of M_z contains all subsets of $\sigma(M_z)$.
- (5) Let $g: \sigma(M_z) \to \mathbb{C}$ be any bounded function. Show that $\widetilde{g}(M_z) = M_{g \circ z}$.
- (6) Let $A \subset \sigma(M_z)$ be arbitrary. Show that E(A) (the value of the spectral measure of M_z) is given by

$$E(A)(\boldsymbol{x}) = \sum_{n \in \mathbb{N}, z_n \in A} x_n \boldsymbol{e}_n, \quad \boldsymbol{x} = (x_n) \in H.$$

Hint: (1) Use the 'moreover part' of Theorem IV.38. (3) For finitely supported vectors use (2) and Proposition VI.2(a,b). For general \mathbf{x}, \mathbf{y} set $\mathbf{x}_n = \sum_{j=1}^n x_j \mathbf{e}_j$ and $\mathbf{y}_n = \sum_{j=1}^n y_j \mathbf{e}_j$, show that $\langle T\mathbf{x}_n, \mathbf{y}_n \rangle \rightarrow \langle T\mathbf{x}, \mathbf{y} \rangle$ for any $T \in L(H)$ and apply it for $\tilde{f}(M_z)$. (6) Apply (5) to the characteristic function of A.

Problem 2. Let $H = \ell^2(\Gamma)$, where Γ is any set (possibly uncountable). Let $\varphi : \Gamma \to \mathbb{C}$ be a bounded function. For $f \in H$ set $M_{\varphi}(f) = \varphi \cdot f$.

- (1) Show that this is a special case of the operator from Problem 20 to Chapter V. Deduce that M_{φ} is a bounded linear operator and $||M_{\varphi}|| = ||\varphi||_{\infty}$.
- (2) Using Problem 35 to Chapter V show that M_{φ} is a normal operator.
- (3) Using Problem 29 to Chapter V show that $\sigma(M_{\varphi}) = \varphi(\Gamma)$.
- (4) Let $f \in \mathcal{C}(\sigma(M_{\varphi}))$. Show that $f(M_{\varphi}) = M_{f \circ \varphi}$.
- (5) Let $(\boldsymbol{e}_{\gamma})_{\gamma \in \Gamma}$ be the canonical orthonormal basis of H. Show that $E_{\boldsymbol{e}_{\gamma}, \boldsymbol{e}_{\gamma}} = \delta_{\varphi(\gamma)}$ (the Dirac measure supported by $\varphi(\gamma)$) and $E_{\boldsymbol{e}_{\gamma}, \boldsymbol{e}_{\delta}} = 0$ for $\gamma, \delta \in \Gamma, \gamma \neq \delta$.
- (6) Let $f, g \in H$. Show that $E_{f,g} = \sum_{\gamma \in \Gamma} f(\gamma) g(\gamma) \delta_{\varphi(\gamma)}$.
- (7) Deduce that \mathcal{A} , the domain σ -algebra of the spectral measure of M_{φ} contains all subsets of $\sigma(M_{\varphi})$.
- (8) Let $g: \sigma(M_{\varphi}) \to \mathbb{C}$ be any bounded function. Show that $\widetilde{g}(M_{\varphi}) = M_{g \circ \varphi}$.
- (9) Let $A \subset \sigma(M_{\varphi})$ be arbitrary. Show that E(A) (the value of the spectral measure of M_{φ}) equals $M_{\chi_{\varphi^{-1}(A)}}$.

Hint: (4) Use the 'moreover part' of Theorem IV.38. (6) For finitely supported vectors use (5) and Proposition VI.2(a,b). For general g, h and a finite set $F \subset \Gamma$ denote $g_F = \chi_F \cdot g$ and $h_F = \chi_F \cdot h$, show that $\langle Tg_F, h_F \rangle \xrightarrow{F} \langle Tg, h \rangle$ (this is the limit of a net indexed by the up-directed set of finite subsets of Γ) for any $T \in L(H)$ and apply it for $\tilde{f}(M_{\varphi})$. (9) Apply (8) to the characteristic function of A.

Problem 3. Let $H = L^2((0,1))$ and let $\varphi : (0,1) \to \mathbb{C}$ be a bounded Lebesgue measurable function. For $f \in H$ set $M_{\varphi}(f) = \varphi \cdot f$.

- (1) Show that this is a special case of the operator from Problem 20 to Chapter V. Deduce that M_{φ} is a bounded linear operator and $||M_{\varphi}|| = ||\varphi||_{\infty}$.
- (2) Using Problem 35 to Chapter V show that M_{φ} is a normal operator.
- (3) Using Problem 29 to Chapter V show that $\sigma(M_{\varphi})$ is the essential range of φ .
- (4) In case φ is continuous on (0, 1), deduce that $\sigma(M_{\varphi}) = \varphi((0, 1))$.
- (5) Let $f \in \mathcal{C}(\sigma(M_{\varphi}))$. Show that $f(M_{\varphi}) = M_{f \circ \varphi}$.
- (6) Assume that (ψ_n) is a uniformly bounded sequence of Lebesgue measurable functions on (0, 1) converging almost everywhere to a function ψ . Show that $M_{\psi_n}(f) \to M_{\psi}f$ in H for each $f \in H$.
- (7) Let $g \in L^{\infty}(E_{M_{\varphi}})$. Show that $\widetilde{g}(M_{\varphi}) = M_{g \circ \varphi}$.
- (8) Let $A \subset \sigma(M_{\varphi})$ be a Borel set. Show that E(A) (the value of the spectral measure of M_{φ}) equals $M_{\chi_{\sigma^{-1}(A)}}$.

Hint: (5) Use the 'moreover part' of Theorem IV.38. (6) Use Lebesgue dominated convergence theorem. (7) Let (f_n) be a sequence provided by Lemma VI.3(b). Next combine (5,6) and Theorem VI.4(b). (8) Apply (7) to the characteristic function of A.

Problem 4. Let $H = \ell^2(\mathbb{Z})$ and let $S \in L(H)$ be defined by $S((x_n)) = (x_{n-1})$. By Problem 6 to Chapter V we know that S is a unitary (hence normal) operator and $\sigma(S) = \mathbb{T} = \{\lambda \in \mathbb{C}; |\lambda| = 1\}.$

- (1) Let $K = L^2((0, 2\pi), \mu)$, where μ is the normalized Lebesgue measure. For $n \in \mathbb{Z}$ set $\varphi_n(t) = e^{int}, t \in (0, 2\pi)$. Show that $U : H \to K$ defined by $U((x_n)) = \sum_n x_n \varphi_n$ (the series is considered in the Hilbert space K) is a unitary operator.
- (2) Show that $S = U^* M_{\varphi_1} U$.
- (3) Compute the values of continuous or measurable calculus applied to S and the spectral measure of S.

Hint: (1) Use known facts from the theory of Fourier series. (3) Use (2) and Problem 3. For example, $\tilde{f}(S) = U^* \tilde{f}(M_{\varphi_1})U$ etc.

PROBLEMS TO SECTION VI.2 - INTEGRAL WITH RESPECT TO A SPECTRAL MEASURE

Problem 5. Let Γ be any set and $\varphi : \Gamma \to \mathbb{C}$ any mapping. For $A \subset \mathbb{C}$ let E(A) be the projection on $\ell^2(\Gamma)$ defined by $E(A)(f) = f \cdot \chi_{\varphi^{-1}(A)}, f \in \ell^2(\Gamma)$, i.e.,

$$E(A)(f)(\gamma) = \begin{cases} f(\gamma) & \text{if } \varphi(\gamma) \in A, \\ 0 & \text{otherwise,} \end{cases} \quad f \in \ell^2(\Gamma).$$

- (1) Show that E is an abstract spectral measure in $\ell^2(\Gamma)$ defined on the σ -algebra of all subsets of \mathbb{C} .
- (2) Show that E is compactly supported if and only if φ is bounded.
- (3) Describe the measures $E_{f,g}$, $f, g \in \ell^2(\Gamma)$.
- (4) Let $\psi : \mathbb{C} \to \mathbb{C}$ be any function. Show that $\int \psi \, dE = M_{\psi \circ \varphi}$ (using the notation from Problem 20 to Chapter V).

Problem 6. Let (Ω, Σ, μ) be a complete measure space with μ semifinite and let φ : $\Omega \to \mathbb{C}$ be a Σ -measurable function. Set $\mathcal{A} = \{A \subset \mathbb{C}; \varphi^{-1}(A) \in \Sigma\}$. For $A \in \mathcal{A}$ let $E(A) = M_{\chi_{\varphi^{-1}(A)}}$ (using the notation from Problem 20 to Chapter V).

- (1) Show that E is an abstract spectral measure in $L^2(\mu)$ defined on the σ -algebra \mathcal{A} .
- (2) Show that E is compactly supported if and only if φ is essentially bounded.
- (3) Describe the measures $E_{f,g}$, $f, g \in L^2(\mu)$.
- (4) Let $\psi : \mathbb{C} \to \mathbb{C}$ be any \mathcal{A} -measurable function. Show that $\int \psi \, \mathrm{d}E = M_{\psi \circ \varphi}$.

Problem 7. (1) Show that the inclusion in Theorem VI.12(a) may be strict.(2) Show that the inclusion in Theorem VI.12(b) may be strict.

Hint: (1) Take f unbounded and g = -f. (2) Take g to be strictly positive and unbounded and $f = \frac{1}{q}$.

PROBLEMS TO SECTION VI.4 - UNBOUNDED NORMAL OPERATORS

Problem 8. Consider the operators $T = M_z$ from Problem 18 to Chapter V on ℓ^2 or $T = M_g$ from Problem 20 to Chapter V on $L^2(\mu)$.

- (1) Show that these operators are normal.
- (2) Compute the operators B and C from Lemma VI.19.
- (3) Compute the projections P_j from Theorem VI.21.

Problem 9. Let *E* be an abstract spectral measure in a Hilbert space *H* defined on a σ -algebra \mathcal{A} . Let $f : \mathbb{C} \to \mathbb{C}$ be an \mathcal{A} -measurable function and $T = \int f \, dE$.

- (1) Show that the operator T is normal.
- (2) Compute the operators B and C from Lemma VI.19.
- (3) Compute the projections P_j from Theorem VI.21.

Problem 10. Let $k \in \mathbb{Z}$ and let $\boldsymbol{z} = (z_n)_{n \in \mathbb{Z}}$ be a fixed sequence of complex numbers. Define an operator T on $\ell^2(\mathbb{Z})$ by the formula

 $T((x_n)_{n\in\mathbb{Z}}) = (z_{n+k}x_{n+k})_{n\in\mathbb{Z}}, \quad (x_n)\in D(T) = \{(y_n)\in\ell^2(\mathbb{Z}); (z_{n+k}y_{n+k})\in\ell^2(\mathbb{Z}).$

- (1) Show that T is a closed densely defined operator.
- (2) Compute T^* .
- (3) Compute T^*T and TT^* .
- (4) Under which conditions is T normal? Under which conditions is T self-adjoint?
- (5) Compute the operators B and C from Lemma VI.19.

Problem 11. Let $r \in \mathbb{R}$ and let $\psi : \mathbb{R} \to \mathbb{C}$ be a fixed measurable function. Define an operator T on $L^2(\mathbb{R})$ by the formula

$$T(f)(t) = \psi(t+r) \cdot f(t+r), \quad t \in \mathbb{R}, f \in L^2(\mathbb{R}).$$

- (1) Show that T is a closed densely defined operator.
- (2) Compute T^* .
- (3) Compute T^*T and TT^* .
- (4) Under which conditions is T normal? Under which conditions is T self-adjoint?
- (5) Compute the operators B and C from Lemma VI.19.

PROBLEMS TO SECTION VI.5 - DIAGONALIZATION OF OPERATORS

Problem 12. Let H, K be two Hilbert spaces and let $U : H \to K$ be a unitary operator (i.e., an onto isometry). Let T be an operator on H. Set $S = UTU^{-1}$. Show that operator T and S have same properties. In particular:

- (1) S is closed or densely defined if and only if T has the respective property.
- (2) $\sigma(S) = \sigma(T)$ and S, T have the same eigenvalues.
- (3) $S^* = UT^*U^{-1}$.
- (4) S is selfadjoint (symmetric, maximal symmetric, normal) if and only if T has the respective property.
- (5) Suppose that T is normal. Let E_T be the spectral measure of T, let \mathcal{A}_T be its domain σ -algebra. Similary, let E_S be the spectral measure of S and \mathcal{A}_S be its domain σ -algebra. Then $\mathcal{A}_S = \mathcal{A}_T$ and $E_S(A) = UE_T(A)U^{-1}$ for $A \in \mathcal{A}_T$.

Problem 13. Let $U : L^2((0, 2\pi)) \to \ell^2(\mathbb{Z})$ be the isometry known from the theory of Fourier series, i.e.,

$$U(f)(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} \, \mathrm{d}t, \quad n \in \mathbb{Z}, f \in L^2((0, 2\pi)).$$

Consider the operator T_j , j = 1, ..., 6, on $L^2((0, 2\pi))$ defined analogously as the operators from Problem 25 to Chapter V.

- (1) Compute the operators UT_jU^{-1} for $j = 1, \ldots, 6$.
- (2) Compute the spectral measure of the operator T_5 .

Hint: (1) Use integration by parts. Moreover, for $f \in D(T_1)$ show that $f(0) - f(2\pi) = \lim_{n \to \pm \infty} 2\pi i n \hat{f}(n)$ and that $\frac{1}{2}(f(0) + f(2\pi)) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$ (by $\hat{f}(n)$ we denote the Fourier coefficients; to prove the second equality use the Jordan-Dirichlet criterion).

Problem 14. Let $\mathcal{P} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be the Plancherel transform, i.e., the extension to $L^2(\mathbb{R})$ of the Fourier transform restricted to $L^1(\mathbb{R}) \cap L^2(R)$. It can be expressed by the formula

$$\mathcal{P}(f) = \lim_{r \to \infty} \left(t \mapsto \frac{1}{2\pi} \int_{-r}^{r} f(x) e^{-itx} \, \mathrm{d}x \right) \quad \text{(the limit taken in } L^2(\mathbb{R})\text{)}.$$

Consider the operator T_1 from Problem 27 to Chapter V on $L^2(\mathbb{R})$.

- (1) Compute the operators $\mathcal{P}T_1\mathcal{P}^{-1}$.
- (2) Compute the spectral measure of the operator T_1 .