XII.2 The notion of an unbounded operator between Banach spaces

Definition. Let X and Y be Banach spaces over \mathbb{F} .

- By an operator from X to Y we mean a linear mapping $T:D(T)\to Y$, where D(T) (the domain of the operator T) is a vector subspace of X.
- The range of the operator T, i.e. the set T(D(T)), is denoted by R(T).
- An operator T from X to Y is called **densely defined**, if its domain D(T) is dense in X.
- \bullet By the graph of an operator T we mean the set

$$G(T) = \{(x, y) \in X \times Y : x \in D(T) \& Tx = y\}.$$

- An operator T is said to be **closed** if its graph G(T) is a closed subset of $X \times Y$, i.e., if for any sequence (x_n) in D(T) satisfying
 - $\circ x_n \to x \text{ for some } x \in X,$
 - $\circ Tx_n \to y \text{ for some } y \in Y;$

one has $x \in D(T)$ and Tx = y.

- Let S and T be operators from X to Y. We write $S \subset T$ if $G(S) \subset G(T)$; i.e., if $D(S) \subset D(T)$ and Tx = Sx for each $x \in D(S)$. The operator T is then called an **extension** of the operator S.
- Let S and T be operators from X to Y. By their sum we mean the operator S+T with domain $D(S+T)=D(S)\cap D(T)$ defined by the formula (S+T)x=Sx+Tx for $x\in D(T+S)$.
- Let T be an operator from X to Y and $\alpha \in \mathbb{F}$. If $\alpha = 0$, by αT we mean the zero operator defined on X; if $\alpha \neq 0$, by αT we mean the operator defined by the formula $(\alpha T)x = \alpha \cdot Tx$ on $D(\alpha T) = D(T)$.
- Let T be an operator from X to Y, let S be an operator from Y to a Banach space Z. By their composition we mean the operator ST with domain

$$D(ST) = \{x \in D(T) : Tx \in D(S)\}$$

defined by the formula (ST)(x) = S(T(x)) for $x \in D(ST)$.

• If T is a one-to-one operator from X to Y, by the inverse operator of T we mean the operator T^{-1} from Y to X, whose domain is $D(T^{-1}) = R(T)$ and which is the inverse mapping of T.

Examples 7.

- (1) Let $D(T) = \mathcal{C}^1([0,1]) \subset \mathcal{C}([0,1])$ and let T(f) = f' for $f \in D(T)$. Then T is a closed densely defined operator from $\mathcal{C}([0,1])$ to $\mathcal{C}([0,1])$.
- (2) Let $D(U) = \{f \in \mathcal{C}^1([0,1]); f'(0) = 0\} \subset \mathcal{C}([0,1])$ and let U(f) = f' for $f \in D(U)$. Then U is a closed densely defined operator from $\mathcal{C}([0,1])$ to $\mathcal{C}([0,1])$ and, moreover, $U \subsetneq T$, where T is the operator from (1).
- (3) Let D(S) be the subspace C([0,1]) consisting of all the polynomials and let S(f) = f' for $f \in D(S)$. Then T is a densely defined operator from C([0,1]) to C([0,1]), which is not closed, but has a closed extension (the operator T from (1)).
- (4) Let D(T) be a subspace of ℓ^2 made by the vector with finitely many nonzero coordinates. For $x = (x_n) \in D(T)$ set $Tx = (\sum_{n=1}^{\infty} x_n, 0, 0, \dots)$. Then T is a densely defined operator from ℓ^2 to ℓ^2 , which has no closed extension.

Lemma 8 (on the graph of an operator). A subset $L \subset X \times Y$ is the graph of an operator from X to Y if and only if it is a linear subspace satisfying

$$\{(x,y)\in L: x=0\}=\{(0,0)\}.$$

Proposition 9. For operators R, S, T between Banach spaces (for which the given operations are defined) one has:

- (i) (R+S)+T=R+(S+T);
- (ii) (RS)T = R(ST);
- (iii) (R+S)T = RT + ST and $T(R+S) \supset TR + TS$. If T is everywhere defined, then T(R+S) = TR + TS.

Proposition 10 (on closed operators). Let T be an operator from X to Y.

- (a) If T is closed and D(T) = X, then $T \in L(X, Y)$.
- (b) T has a closed extension if and only if $(x_n, Tx_n) \to (0, y)$ in $D(T) \times Y$ implies y = 0.
- (c) If T is closed and one-to-one, then T^{-1} is closed as well.

Notation. If T is an operator from X to Y, which has a closed extension, by the symbol \overline{T} we denote its minimal closed extension, i.e., the operator whose graph $G(\overline{T})$ is $\overline{G(T)}$, the closure of the graph of T in $X \times Y$.

Proposition 11. Let T be a closed operator from X to Y. Then:

- (a) If $S \in L(X,Y)$, then S+T is a closed operator and D(S+T)=D(T).
- (b) If $S \in L(Y, Z)$, then D(ST) = D(T). If S is, moreover, an isomorphism of Y into Z, then ST is closed.
- (c) If $S \in L(Z, X)$, then TS is closed.

Examples 12.

- (1) Let $X = \mathcal{C}([0,1])$, $D(T) = \mathcal{C}^1([0,1])$, T(f) = f' for $f \in D(T)$ and $Sf = \sum_{n=1}^{\infty} \frac{1}{2^n} f(\frac{1}{n})$ for $f \in \mathcal{C}([0,1])$ (the result is a constant function). Then T is densely defined and closed, $S \in L(X)$, but ST has no closed extension.
- (2) Let $X = \ell^2$, $Y = \{(x_n) \in \ell^2; \sum_{n=1}^{\infty} |nx_n|^2 < \infty\}$. For $(x_n) \in Y$ set

$$T((x_n)) = (0, x_1, 2x_2, 3x_3, \dots),$$

$$S((x_n)) = (\sum_{n=1}^{\infty} x_n, -x_1, -2x_2, -3x_3, \dots).$$

Then S and T are densely defined closed operators, but S+T has no closed extension.

Proposition 13 (on the inverse to a closed operator). Let T be a one-to-one closed operator from X to Y. The following assertions are equivalent:

- (i) $R(T) = Y \text{ and } T^{-1} \in L(Y, X).$
- (ii) R(T) = Y.
- (iii) R(T) is dense in Y and T^{-1} is continuous on R(T).

Remark. For non-closed operators the assertions from the previous proposition are not equivalent. More precisely: If T is an operator from X to Y, which is not closed, then:

- The assertion (i) cannot hold.
- The assertion (ii) may hold. If it holds, then neither (i) nor (iii) hold. In this case T may or may not have a closed extension. If it has a closed extension, then the operator \overline{T} is not one-to-one.
- The assertion (iii) may hold. If it holds, then neither (i) nor (ii) hold. In this case T may or may not have a closed extension. If it has a closed extension, then the operator \overline{T} satisfies the equivalent conditions from the previous proposition.