## XII. 4 Operators on a Hilbert space

Convention: In the sequel we will consider only operators on a complex Hilbert space $H$. The inner product of $x, y \in H$ is denoted by $\langle x, y\rangle$.
Remark: If $H$ is a Hilbert space, then $H \times H$ is also a Hilbert space, if we define the inner product by

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle, \quad\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in H \times H
$$

Definition. Let $T$ be a densely defined operator on $H$.

- By $D\left(T^{*}\right)$ we denote the set of those $y \in H$, for which the mapping

$$
x \mapsto\langle T x, y\rangle
$$

is continuous on $D(T)$.

- For $y \in D\left(T^{*}\right)$ denote by $T^{*} y$ the unique element of $H$ satisfying

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \text { for each } x \in D(T)
$$

Lemma 16. Let $T$ be a densely defined operator on $H$. Then $D\left(T^{*}\right)$ is a linear subspace of $H$ and $T^{*}$ is an operator on $H$ with domain $D\left(T^{*}\right)$.
Remark. Let $T$ be an operator on $H$, which is not densely defined. Set $K=\overline{D(T)}$. The definition of $D\left(T^{*}\right)$ still makes sense. Moreover, for each $y \in D\left(T^{*}\right)$ there exists a unique $z \in K$ satisfying $\langle T x, y\rangle=\langle x, z\rangle$ for $x \in D(T)$. It would be possible to define $T^{*}$ as an operator from $H$ to $K$ (which is a special case of operators on $H$ ). If we, moreover, denote by $P$ the orthogonal projection of $H$ onto $K$, then $P T$ is a densely defined operator on $K, D\left((P T)^{*}\right)=D\left(T^{*}\right) \cap K$ and $(P T)^{*}$ is the restriction of the operator $T^{*}$ from the previous sentence to $D\left((P T)^{*}\right)$.

Definition. The operator $T^{*}$ is said to be the adjoint operator to $T$.
Proposition 17 (properties of adjoint operator).
(a) If $S$ is densely defined and $S \subset T$, then $T^{*} \subset S^{*}$.
(b) If $S+T$ is densely defined, then $S^{*}+T^{*} \subset(S+T)^{*}$. If moreover $S \in L(H)$, then $S^{*}+T^{*}=(S+T)^{*}$.
(c) If $S$ and $S T$ are densely defined, then $T^{*} S^{*} \subset(S T)^{*}$. If moreover $S \in L(H)$, then $T^{*} S^{*}=(S T)^{*}$.

Proposition 18 (on kernel and range). For a densely defined operator $T$ one has $\operatorname{Ker}\left(T^{*}\right)=R(T)^{\perp}$.
Lemma 19 (on the transformation of a graph). Define $V: H \times H \rightarrow H \times H$ by $V(x, y)=$ $(-y, x)$. Then
(a) $V$ is a unitary operator on $H \times H$,
(b) $G\left(T^{*}\right)=(V(G(T)))^{\perp}=V\left(G(T)^{\perp}\right)$ for a densely defined operator $T$ on $H$.

Remark: Lemma 19 is a very useful tool for working with adjoint operators. Assertion (b) is a concise expression of the equivalence

$$
z=T^{*} y \Leftrightarrow(\forall x \in D(T):(y, z) \perp(-T x, x)) \Leftrightarrow(\forall x \in D(T):\langle x, z\rangle=\langle T x, y\rangle)
$$

Lemma 20. Let $T$ be densely defined, one-to-one and let $R(T)$ be dense. Then $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$.

Proposition 21 (adjoint operator and closedness). Let $T$ be densely defined. Then:
(a) The operator $T^{*}$ is closed.
(b) $T$ has a closed extension if and only if $T^{*}$ is densely defined (then $\bar{T}=T^{* *}$ ).
(c) $T$ is closed if and only if $T=T^{* *}$ (implicitly $T^{*}$ is densely defined).

Definition. Let $T$ be an operator on $H$.

- We say that $T$ is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for each $x, y \in D(T)$.
- We say that $T$ is selfadjoint if $T=T^{*}$.


## Remarks.

(1) A symmetric operator need not be densely defined. If $T$ is densely defined, then $T$ is symmetric if and only if $T \subset T^{*}$.
(2) Let $T$ be an operator on $H$, which is not densely defined. Set $K=\overline{D(T)}$ and let $P$ be the orthogonal projection onto $K$. Then $P T$ is a densely defined operator on $K$. Moreover, $T$ is symmetric if and only if $P T$ je symmetric.
(3) A selfadjoint operator is always densely defined (in order $T^{*}$ is defined) and closed (by Proposition 21(a)).

Lemma 22. Let $T$ be a selfadjoint operator. Then $T$ is maximal symmetric (i.e., there is no proper symmetric extension of $T$ ).
Remark. A densely defined maximal symmetric operator need not be selfadjoint. This follows from the remarks at the end of Section XII.5.
Proposition 23 (further properties of symmetric operators). Let $T$ be a symmetric densely defined operator on $H$. Then:
(a) $\bar{T}$ is symmetric.
(b) If $D(T)=H$, then $T$ is bounded and selfadjoint.
(c) If $R(T)$ is dense, then $T$ is one-to-one.
(d) If $R(T)=H$, then $T$ is one-to-one, selfadjoint and $T^{-1} \in L(H)$.
(e) If $T$ is selfadjoint and one-to-one, then $T^{-1}$ is selfadjoint (in particular densely defined).

Lemma 24 (on $(\alpha+i \beta) I-S$ ). Let $S$ be a symmetric operator on $H$ and $\lambda \in \mathbb{C} \backslash \mathbb{R}$. Then $\lambda I-S$ is one-to-one and its inverse is continuous on $R(\lambda I-S)$. Moreover, $S$ is closed if and only if $R(\lambda I-S)$ is closed.

Theorem 25 (spectrum of a selfadjoint operator). For each selfadjoint operator $T$ one has $\emptyset \neq \sigma(T) \subset \mathbb{R}$.

Corollary 26 (characterization of selfadjoint operators among symmetric ones). For a densely defined operator $T$ on $H$ the following assertions are equivalent:
(i) $T$ is selfadjoint;
(ii) $T$ is symmetric and $\sigma(T) \subset \mathbb{R}$;
(iii) $T$ is symmetric and there exists $\lambda \in \mathbb{C} \backslash \mathbb{R}$ such that $\lambda, \bar{\lambda} \in \rho(T)$.

