
XII.5 Symmetric operators and the Cayley transform

Definition. Let S be a symmetric (not necessarily densely defined) operator on H. Denote by
CS the operator

CS = (S − iI)(S + iI)−1.

Then CS is an operator on H, which is called the Cayley transform of the operator S.

Theorem 27 (properties of CS). Let S be a symmetric operator on H and let CS be its

Cayley transform. Then

(a) CS is a linear isometry of D(CS) = R(S + iI) onto R(CS) = R(S − iI).
(b) I−CS = 2i(S+ iI)−1; in particular, the operator I−CS is one-to-one and R(I−CS) =

D(S).
(c) S = i(I + CS)(I − CS)

−1.

(d) CS is closed ⇔ S is closed ⇔ D(CS) is closed ⇔ R(CS) is closed.

Lemma 28 (on an isometric operator). Let U be any operator on H, which is an isometry of
D(U) onto R(U). Then

(a) 〈Ux, Uy〉 = 〈x, y〉 for any x, y ∈ D(U). In particular: U is unitary if and only if

D(U) = R(U) = H.

(b) Ker(I −U) = D(U)∩ (R(I −U))⊥. In particular, if R(I −U) is dense in H, then I −U

is one-to-one.

Theorem 29 (range of the Cayley transform). Let U be an operator onH, which is an isometry
of D(U) onto R(U). Suppose that I−U is one-to-one. Then the operator S = i(I+U)(I−U)−1

is symmetric and CS = U . Further, S is densely defined if and only if R(I − U) is dense.

Theorem 30 (Cayley transform for selfadjoint operators).

(a) Let S be a symmetric operator on H. Then S is selfadjoint if and only if CS is a unitary

operator.

(b) Let U be a unitary operator na H such that I − U is one-to-one. Then the operator

S = i(I + U)(I − U)−1 is selfadjoint and CS = U .

Remarks.

(1) Let S and T be symmetric operators on H. Then S ⊂ T if and only if CS ⊂ CT .
(2) Let S be a densely defined closed symmetric operator on H. The codimensions of the
subspaces D(CS) and R(CS) (i.e., the dimensions of their orthogonal complements) are
called the deficiency indices of the operator S. Then:

◦ S is selfadjoint if and only if both deficiency indices are zero.
◦ S is a maximal symmetric operator if and only if at least one of the deficiency
indices is zero.

◦ S has a selfadjoint extension if and only if both deficiency indices are the same
(i.e., if and only if there exists a linear isometry of (D(CS))

⊥ onto (R(CS))
⊥).

(3) Let S be a closed symmetric operator on H, not necessarily densely defined. Also in
this case one may define the deficiency indices. Moreover:

◦ If D(CS) = H or R(CS) = H, then S is densely defined.
Hence, also in this case the first of the above equivalences holds. It easily follows that
in the second assertion ⇐ holds and in the third assertion ⇒ holds. The validity of the
converse implications seems not to be clear.


