XII. 5 Symmetric operators and the Cayley transform

Definition. Let S be a symmetric (not necessarily densely defined) operator on H. Denote by C_{S} the operator

$$
C_{S}=(S-i I)(S+i I)^{-1}
$$

Then C_{S} is an operator on H, which is called the Cayley transform of the operator S.
Theorem 27 (properties of C_{S}). Let S be a symmetric operator on H and let C_{S} be its Cayley transform. Then
(a) C_{S} is a linear isometry of $D\left(C_{S}\right)=R(S+i I)$ onto $R\left(C_{S}\right)=R(S-i I)$.
(b) $I-C_{S}=2 i(S+i I)^{-1}$; in particular, the operator $I-C_{S}$ is one-to-one and $R\left(I-C_{S}\right)=$ $D(S)$.
(c) $S=i\left(I+C_{S}\right)\left(I-C_{S}\right)^{-1}$.
(d) C_{S} is closed $\Leftrightarrow S$ is closed $\Leftrightarrow D\left(C_{S}\right)$ is closed $\Leftrightarrow R\left(C_{S}\right)$ is closed.

Lemma 28 (on an isometric operator). Let U be any operator on H, which is an isometry of $D(U)$ onto $R(U)$. Then
(a) $\langle U x, U y\rangle=\langle x, y\rangle$ for any $x, y \in D(U)$. In particular: U is unitary if and only if $D(U)=R(U)=H$.
(b) $\operatorname{Ker}(I-U)=D(U) \cap(R(I-U))^{\perp}$. In particular, if $R(I-U)$ is dense in H, then $I-U$ is one-to-one.

Theorem 29 (range of the Cayley transform). Let U be an operator on H, which is an isometry of $D(U)$ onto $R(U)$. Suppose that $I-U$ is one-to-one. Then the operator $S=i(I+U)(I-U)^{-1}$ is symmetric and $C_{S}=U$. Further, S is densely defined if and only if $R(I-U)$ is dense.

Theorem 30 (Cayley transform for selfadjoint operators).
(a) Let S be a symmetric operator on H. Then S is selfadjoint if and only if C_{S} is a unitary operator.
(b) Let U be a unitary operator na H such that $I-U$ is one-to-one. Then the operator $S=i(I+U)(I-U)^{-1}$ is selfadjoint and $C_{S}=U$.

Remarks.

(1) Let S and T be symmetric operators on H. Then $S \subset T$ if and only if $C_{S} \subset C_{T}$.
(2) Let S be a densely defined closed symmetric operator on H. The codimensions of the subspaces $D\left(C_{S}\right)$ and $R\left(C_{S}\right)$ (i.e., the dimensions of their orthogonal complements) are called the deficiency indices of the operator S. Then:

- S is selfadjoint if and only if both deficiency indices are zero.
- S is a maximal symmetric operator if and only if at least one of the deficiency indices is zero.
- S has a selfadjoint extension if and only if both deficiency indices are the same (i.e., if and only if there exists a linear isometry of $\left(D\left(C_{S}\right)\right)^{\perp}$ onto $\left.\left(R\left(C_{S}\right)\right)^{\perp}\right)$.
(3) Let S be a closed symmetric operator on H, not necessarily densely defined. Also in this case one may define the deficiency indices. Moreover:
- If $D\left(C_{S}\right)=H$ or $R\left(C_{S}\right)=H$, then S is densely defined.

Hence, also in this case the first of the above equivalences holds. It easily follows that in the second assertion \Leftarrow holds and in the third assertion \Rightarrow holds. The validity of the converse implications seems not to be clear.

