XIII.3 Spectral decomposition of an (unbounded) selfadjoint operator

Proposition 14 (measurable calculus via integral). Let $T \in L(H)$ be a normal operator. Let E_T be its spectral measure and \mathcal{A}_T the respective σ -algebra. If g is a bounded \mathcal{A}_T -measurable function, then $\tilde{g}(T) = \int g \, \mathrm{d}E_T$.

Lemma 15. Let T be a selfadjoint operator on H. Let E be the spectral measure of the operator C_T . Then

$$T = \int i \frac{1+z}{1-z} \, \mathrm{d}E(z).$$

Lemma 16 (on the image of a spectral measure). Let F be an abstract spectral measure in H defined on a σ -algebra \mathcal{A} and let $\varphi : \mathbb{C} \to \mathbb{C}$ be an \mathcal{A} -measurable mapping. Define

$$\mathcal{A}' = \{ A \subset \mathbb{C} : \varphi^{-1}(A) \in \mathcal{A} \}$$

and for $A \in \mathcal{A}'$ set

$$E(A) = F(\varphi^{-1}(A)).$$

Then E is an abstract spectral measure in H and for each \mathcal{A}' -measurable function f one has

$$\int f \, \mathrm{d}E = \int f \circ \varphi \, \mathrm{d}F.$$

Theorem 17 (spectral decomposition of a selfadjoint operator). If T is a selfadjoint operator on a Hilbert space H, then there exists a unique abstract spectral measure E in H such that $T = \int \text{id } dE$.

This measure E is the image of the spectral measure of the operator C_T under the Borel mapping $z \mapsto i \frac{1+z}{1-z}$.

Corollary 18. Let T be a selfadjoint operator on H. Then T is bounded if and only if $\sigma(T)$ is a bounded set.