XIII.5 Complements to the theory of unbounded operators

Proposition 24. Let E be an abstract spectral measure in a Hilbert space H defined on a
o-algebra A. For an A-measurable function f: C — C set ®(f) = [ fdE.

(1) Let x € H. Set H, = {®(f)x;f € Cy(C)}. Then H, is a (not necessarily closed)
subspace of H and the mapping U, : f — ®(f)x is a linear isometry of the space
L*(E, ) onto H,.

(2) There exists a set I' C Sy satisfying:

o Hy L H,forxz,yel, z#y.
o span(|J,cr H:) is a dense subspace H.

(3) Let Q=T x C. Let

A={AcVzel:{\eC;(z,\) c A} € A}

and
wA) =Y E..({fA€C;(z,)) € A}), AcA

zel

Then (2, A, 11) is a measure space (with a nonnegative measure). Moreover, the mapping
U: L*(pn) — H defined by

U(g) =Y @\ gz, )z, g€ L (p)

is a linear isometry of L?(11) onto H.
(4) Let f: C — C be an A-measurable function. Then ®(f) = UM;U", where

f(x7)‘):f()‘)7 (x7)‘) €

anf M is the operator on L?(p) given by

Mig=f-g. g€ DMy ={geL?*n);f geL’(n)}

Theorem 25 (diagonalization of a normal operator).  Let T be a normal operator on a Hilbert
space H. Then T is unitarily equivalent to a suitable multiplication operator. L.e., there exist a
nonnegative measure j, a unitary operator U : L?(p) — H and a u-measurable function f such
that T'= UM ;U*, where My is defined as in Proposition 24. Moreover:

(a) If T is selfadjoint, f can be chosen to be real-valued.
(b) If T is bounded, f can be chosen to be bounded.
(c) If H is separable, ;v can be chosen to be o-finite.



Theorem 26 (an alternative expression of the spectral decomposition of a selfadjoint operator).
Let T be a selfadjoint operator on H and let E be its spectral measure (from Theorem 17).
Then E(C\R) =0. For A € R set E\ = E((—o0, \]). Then:

(a
(b) ExE, = E,Ex = Eminpa for A\, p € R.

) E\ is an orthogonal projection for each A € R.
)

(¢) lim E x—EAxforeacthHand/\eR
)
)

pn—A+
(d) If X is not an eigenvalue of T', then hlil E,x = Exx for each x € H.
p—A—
(e) If X is an eigenvalue of T, then the formula Pyx = lim E,x, x € H, defines an

n—>A—
orthogonal projectiom such that Ey — P, is also an orthogonal projection and, moreover,
R(E)\ — P)\) Ker()\I T)
(f) lim Ey,xr=0and lim E,x=x for eachz € H.

H——00 pn—r—+00
(g) A real number \ belongs to p(T') if and only if the mapping p — E,, is constant on a
neighborhood of .

Theorem 27 (selfadjoint operators on a real Hilbert space).  Let H be a real Hilbert space
and let T be an operator na H. Then T* can be defined in the same way as in the complex
case (see Section XI1.4). Let Hc be the hilbertian complexification of H, i.e., the space Ho =
H +iH ={x+iy;z,y € H} equipped with the scalar product

(4 1y, u+iv) = (z,u) + (y,v) +i(y,u) — i (x,v), z+iy,u+iv € He.

Define an operator Tc on He by

To(z+iy) =T(x) +iT(y), x+1iy e D(Tc)=D(T)+iD(T).
Then:
(a) If T is densely defined, then T¢ is also densely defined and (T¢)* = (T%)c.
(b) If T'€ L(H), then Tc € L(H¢) and ||T¢|| = ||T||-
(c) If T is selfadjoint, then T is also selfadjoint and, moreover, for A € R we have

M — T is invertible in L(H) < A — T¢ is invertible in L(H¢).

(d) Let T be selfadjoint and let E be the spectral measure of T¢, let A be the corresponding
o-algebra. Then the formula

Er(A)=E(A)|lyg, AcA
defines a “real spectral measure” on R and T = f id dER.

Corollary 28. Let H be a real Hilbert space.

(i) If T € L(H) is self-adjoint, then o(T) is a nonempty compact subset of R. Moreover,
given a real-valued continuous function f on o(T) we may define f(T) (as the restric-
tion of f(T¢) to H). The assignment f — f(T') then satisfies conditions (a)-(e) from
Theorem XI.14 (after obvious adjustments).

(ii) If T' € L(H), we may define the operator |I'| = VT*T (as in Section XII.1). Theorem
XI1.6 is therefore valid for real space as well.

(iii) If T € L(H) is compact and self-adjoint, the statement of Theorem II1.38 holds (the
numbers \j are real).

(iv) If T € L(H) is compact, it admits a Schmidt representation (see Section III.7).



