XIII.5 Complements to the theory of unbounded operators

Proposition 24. Let E be an abstract spectral measure in a Hilbert space H defined on a σ -algebra A. For an A-measurable function $f: \mathbb{C} \to \mathbb{C}$ set $\Phi(f) = \int f \, dE$.

- (1) Let $x \in H$. Set $H_x = \{\Phi(f)x; f \in \mathbb{C}_b(\mathbb{C})\}$. Then H_x is a (not necessarily closed) subspace of H and the mapping $U_x : f \mapsto \Phi(f)x$ is a linear isometry of the space $L^2(E_{x,x})$ onto $\overline{H_x}$.
- (2) There exists a set $\Gamma \subset S_H$ satisfying:
 - $\circ H_x \perp H_y \text{ for } x, y \in \Gamma, x \neq y.$
 - \circ span $(\bigcup_{x\in\Gamma} H_x)$ is a dense subspace H.
- (3) Let $\Omega = \Gamma \times \mathbb{C}$. Let

$$\tilde{\mathcal{A}} = \{ A \subset \Omega; \forall x \in \Gamma : \{ \lambda \in \mathbb{C}; (x, \lambda) \in A \} \in \mathcal{A} \}$$

and

$$\mu(A) = \sum_{x \in \Gamma} E_{x,x}(\{\lambda \in \mathbb{C}; (x,\lambda) \in A\}), \quad A \in \tilde{\mathcal{A}}.$$

Then $(\Omega, \tilde{\mathcal{A}}, \mu)$ is a measure space (with a nonnegative measure). Moreover, the mapping $U: L^2(\mu) \to H$ defined by

$$U(g) = \sum_{x \in \Gamma} \Phi(\lambda \mapsto g(x, \lambda))x, \quad g \in L^2(\mu)$$

is a linear isometry of $L^2(\mu)$ onto H.

(4) Let $f: \mathbb{C} \to \mathbb{C}$ be an A-measurable function. Then $\Phi(f) = UM_{\tilde{f}}U^*$, where

$$\tilde{f}(x,\lambda) = f(\lambda), \quad (x,\lambda) \in \Omega$$

anf $M_{\tilde{f}}$ is the operator on $L^2(\mu)$ given by

$$M_{\tilde{f}}g = \tilde{f} \cdot g, \quad g \in D(M_{\tilde{f}}) = \{g \in L^2(\mu); \tilde{f} \cdot g \in L^2(\mu)\}.$$

Theorem 25 (diagonalization of a normal operator). Let T be a normal operator on a Hilbert space H. Then T is unitarily equivalent to a suitable multiplication operator. I.e., there exist a nonnegative measure μ , a unitary operator $U: L^2(\mu) \to H$ and a μ -measurable function f such that $T = UM_fU^*$, where M_f is defined as in Proposition 24. Moreover:

- (a) If T is selfadjoint, f can be chosen to be real-valued.
- (b) If T is bounded, f can be chosen to be bounded.
- (c) If H is separable, μ can be chosen to be σ -finite.

Theorem 26 (an alternative expression of the spectral decomposition of a selfadjoint operator). Let T be a selfadjoint operator on H and let E be its spectral measure (from Theorem 17). Then $E(\mathbb{C} \setminus \mathbb{R}) = 0$. For $\lambda \in \mathbb{R}$ set $E_{\lambda} = E((-\infty, \lambda])$. Then:

- (a) E_{λ} is an orthogonal projection for each $\lambda \in \mathbb{R}$.
- (b) $E_{\lambda}E_{\mu} = E_{\mu}E_{\lambda} = E_{\min\{\lambda,\mu\}} \text{ for } \lambda, \mu \in \mathbb{R}.$
- (c) $\lim_{\mu \to \lambda^+} E_{\mu} x = E_{\lambda} x$ for each $x \in H$ and $\lambda \in \mathbb{R}$.
- (d) If λ is not an eigenvalue of T, then $\lim_{\mu \to \lambda^-} E_{\mu} x = E_{\lambda} x$ for each $x \in H$.
- (e) If λ is an eigenvalue of T, then the formula $P_{\lambda}x = \lim_{\mu \to \lambda^{-}} E_{\mu}x$, $x \in H$, defines an orthogonal projection such that $E_{\lambda} P_{\lambda}$ is also an orthogonal projection and, moreover, $R(E_{\lambda} P_{\lambda}) = \text{Ker}(\lambda I T)$.
- (f) $\lim_{\mu \to -\infty} E_{\mu} x = 0$ and $\lim_{\mu \to +\infty} E_{\mu} x = x$ for each $x \in H$.
- (g) A real number λ belongs to $\rho(T)$ if and only if the mapping $\mu \mapsto E_{\mu}$ is constant on a neighborhood of λ .

Theorem 27 (selfadjoint operators on a real Hilbert space). Let H be a real Hilbert space and let T be an operator na H. Then T^* can be defined in the same way as in the complex case (see Section XII.4). Let H_C be the hilbertian complexification of H, i.e., the space $H_C = H + iH = \{x + iy; x, y \in H\}$ equipped with the scalar product

$$\langle x + iy, u + iv \rangle = \langle x, u \rangle + \langle y, v \rangle + i \langle y, u \rangle - i \langle x, v \rangle, \quad x + iy, u + iv \in H_C.$$

Define an operator T_C on H_C by

$$T_C(x+iy) = T(x) + iT(y), \quad x+iy \in D(T_C) = D(T) + iD(T).$$

Then:

- (a) If T is densely defined, then T_C is also densely defined and $(T_C)^* = (T^*)_C$.
- (b) If $T \in L(H)$, then $T_C \in L(H_C)$ and $||T_C|| = ||T||$.
- (c) If T is selfadjoint, then T_C is also selfadjoint and, moreover, for $\lambda \in \mathbb{R}$ we have

$$\lambda I - T$$
 is invertible in $L(H) \Leftrightarrow \lambda I_C - T_C$ is invertible in $L(H_C)$.

(d) Let T be selfadjoint and let E be the spectral measure of T_C , let A be the corresponding σ -algebra. Then the formula

$$E_R(A) = E(A)|_H, \quad A \in \mathcal{A}$$

defines a "real spectral measure" on \mathbb{R} and $T = \int \mathrm{id} \, \mathrm{d}E_R$.

Corollary 28. Let H be a real Hilbert space.

- (i) If $T \in L(H)$ is self-adjoint, then $\sigma(T)$ is a nonempty compact subset of \mathbb{R} . Moreover, given a real-valued continuous function f on $\sigma(T)$ we may define $\tilde{f}(T)$ (as the restriction of $\tilde{f}(T_C)$ to H). The assignment $f \mapsto \tilde{f}(T)$ then satisfies conditions (a)–(e) from Theorem XI.14 (after obvious adjustments).
- (ii) If $T \in L(H)$, we may define the operator $|T| = \sqrt{T^*T}$ (as in Section XII.1). Theorem XII.6 is therefore valid for real space as well.
- (iii) If $T \in L(H)$ is compact and self-adjoint, the statement of Theorem III.38 holds (the numbers λ_k are real).
- (iv) If $T \in L(H)$ is compact, it admits a Schmidt representation (see Section III.7).