X.2 Spectrum and its properties

Definition. Let A be a Banach algebra with a unit e and let $x \in A$.

• The spectrum of x is the set

 $(\sigma_A(x) =) \quad \sigma(x) = \{\lambda \in \mathbb{C} : \lambda e - x \text{ is not invertible in } A\}.$

- The resolvent set of x is the set $\rho(x) = \mathbb{C} \setminus \sigma(x)$.
- The **resolvent function** of x is the function

$$R(\lambda, x) := (\lambda e - x)^{-1}, \qquad \lambda \in \rho(x).$$

If A is a Banach algebra without a unit and $x \in A$, the **spectrum** of x is defined by

$$(\sigma_A(x) =) \quad \sigma(x) = \sigma_{A^+}((x, 0)).$$

If A is a Banach algebra (unital or not), the **spectral radius** of $x \in A$ is the number $r(x) = \sup\{|\lambda| : \lambda \in \sigma(x)\}.$

Remarks:

- (1) The spectrum of x is a purely algebraic notion, it does not depend on the norm of the Banach algebra.
- (2) If A has no unit, then $0 \in \sigma_A(x)$ for each $x \in A$.

(3) If A is unital, then $\sigma_{A^+}((x,0)) = \sigma_A(x) \cup \{0\}$ for $x \in A$.

Proposition 8 (properties of the resolvent function). Let A be a unital Banach algebra and let $a \in A$. Then:

- (i) $\rho(a)$ is an open subset of \mathbb{C} .
- (ii) The mapping $\lambda \mapsto R(\lambda, a)$ is continuous on $\rho(a)$.
- (iii) For $\lambda, \mu \in \rho(a)$ one has

$$R(\mu, a) - R(\lambda, a) = -(\mu - \lambda)R(\mu, a)R(\lambda, a).$$

In particular, $R(\mu, a)$ and $R(\lambda, a)$ commute.

- (iv) The function $\lambda \mapsto \varphi(R(\lambda, a))$ is holomorphic on $\rho(a)$ for each $\varphi \in A^*$.
- (v) For $|\lambda| > ||a||$ one has $\lambda \in \rho(a)$ and

$$R(\lambda, a) = \frac{1}{\lambda} \left(e - \frac{a}{\lambda} \right)^{-1} = \sum_{n=0}^{\infty} \frac{a^n}{\lambda^{n+1}}.$$

(vi) $aR(\lambda, a) = R(\lambda, a)a$ for any $\lambda \in \rho(a)$.

Theorem 9. Let A be a Banach algebra. Then for each $x \in A$ the spectrum $\sigma(x)$ is a nonempty compact subset of \mathbb{C} .

Remark. $\{a \in A : \sigma(a) \subset G\}$ is open whenever $G \subset \mathbb{C}$ is open (i.e., $\sigma: A \to \mathcal{K}(\mathbb{C})$ is an upper semi-continuous multivalued mapping of A to the set of all the nonempty compact subsets of \mathbb{C}°).

Theorem 10 (Gelfand-Mazur). Let A be a unital Banach algebra. Then A is a field (i.e., all the nonzero elements of A are invertible, in other words $G(A) = A \setminus \{0\}$), if and only if A is isometrically isomorphic to the Banach algebra \mathbb{C} .

Definition. Let A be a Banach algebra, let $p(\lambda) = \sum_{j=0}^{n} \alpha_j \lambda^j$ be a polynomial with complex coefficients and let $a \in A$.

- If A has a unit e, we define $p(a) = \sum_{j=0}^{n} \alpha_j a^j$ (where $a^0 = e$).
- If A has no unit and p(0) = 0 (i.e., $\alpha_0 = 0$), we define $p(a) = \sum_{j=1}^n \alpha_j a^j$.

Lemma 11. Let A be a unital Banach algebra and let p, q be polynomials with complex coefficients. Then (pq)(a) = p(a)q(a) for each $a \in A$.

Lemma 12 (spectrum and polynomials). Let A be a unital Banach algebra, let p be a polynomial with complex coefficients and let $a \in A$. Then:

- (a) $p(a) \in G(A)$, if and only if the roots of p belong to $\rho(a)$.
- (b) $\sigma(p(a)) = p(\sigma(a)).$

Theorem 13 (on the spectral radius). Let A be a Banach algebra and let $a \in A$. Then:

- (a) $r(a) = \inf_{n \in \mathbb{N}} ||a^n||^{\frac{1}{n}} = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}}.$
- (b) If A is unital, the formula from Proposition 8(v) holds also for $|\lambda| > r(a)$, where the series on the right-hand side converges absolutely.

Corollary 14. If A is a unital Banach algebra and an element $a \in A$ satisfies r(a) < 1, then $(e - a)^{-1} = \sum_{n=0}^{\infty} a^n$ (the series converges absolutely).

Proposition 15. Let A be Banach algebra with a unit e. Let B be a closed subalgebra of A containing e and let $x \in B$. Then:

- (a) $\partial \sigma_B(x) \subset \sigma_A(x) \subset \sigma_B(x)$.
- (b) Let G be a connected component of $\mathbb{C} \setminus \sigma_A(x)$. Then either $G \subset \sigma_B(x)$ or $G \cap \sigma_B(x) = \emptyset$.
- (c) If $\mathbb{C} \setminus \sigma_A(x)$ is a connected set, then $\sigma_A(x) = \sigma_B(x)$.

Corollary 16. Let A be a Banach algebra, let B be its closed subalgebra and let $x \in B$. Then the assertions (a)–(c) of Proposition 14 hold, if we replace $\sigma_A(x)$ and $\sigma_B(x)$ by $\sigma_A(x) \cup \{0\}$ and $\sigma_B(x) \cup \{0\}$.