XI. C*-algebras and continuous function calculus

Remark: This chapter is a continuation of the preceding one, all spaces are again assumed to be complex.

XI.1 Algebras with involution and C*-algebras – basic properties

Definition. Let A be a Banach algebra.

• An involution on A is a mapping $x \mapsto x^*$ of A into itself such that for each $x, y \in A$ and $\lambda \in \mathbb{C}$ one has

$$(x+y)^* = x^* + y^*,$$
 $(\lambda x)^* = \overline{\lambda} x^*,$ $(xy)^* = y^* x^*$ and $x^{**} = x.$

• A Banach algebra A with involution is called a C^* -algebra if for each $x \in A$ one has

$$\|x^*x\| = \|x\|^2.$$

• If A is a Banach algebra with involution and $x \in A$, the element x is called selfadjoint (or hermitien) if $x^* = x$; x is called normal if $x^*x = xx^*$.

Remarks.

- (1) Let A be a Banach algebra with involution. Then $e \in A$ is a left unit if and only if e^* is a right unit. Hence, if A has either a left unit or a right unit, it is unital and the unit is selfadjoint.
- (2) If A is a Banach algebra with involution such that

$$||x^*x|| \ge ||x||^2 \text{ for } x \in A,$$

then A is a C^* -algebra.

(3) Let A be a C*-algebra. Then $x \mapsto x^*$ is a conjugate linear isometry of A onto A. Hence,

$$||x^*x|| = ||xx^*|| = ||x||^2 = ||x^*||^2$$
 for $x \in A$.

(4) Let A be a nontrivial C^* -algebra with unit e. Then ||e|| = 1.

Examples 1.

- (1) The complex field is a commutative C^* -algebra, if the involution is defined by $\lambda^* = \overline{\lambda}$ for $\lambda \in \mathbb{C}$.
- (2) The algebra $C_0(T)$ (where T is locally compact space) is a commutative C^* -algebra, if the involution is defined by $f^*(t) = \overline{f(t)}$ for $t \in T$.

(3) The matrix algebra M_n is a C^* -algebra if the involution is defined by

$$\left((a_{ij})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}} \right)^* = (\overline{a_{ji}})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}.$$

- (4) If H is a Hilbert space, then the algebras L(H) and K(H) are C^* -algebras, if the involution T^* is defined to be the adjoint operator to T.
- (5) On the algebra $L^1(\mathbb{R}^n)$ one can define an involution by $f^*(x) = \overline{f(x)}$, $x \in \mathbb{R}^n$; or by $f^*(x) = \overline{f(-x)}$, $x \in \mathbb{R}^n$. $L^1(\mathbb{R}^n)$ is not a C^* -algebra with any of these involutions.

Proposition 2 (properties of algebras with involution). Let A be a Banach algebra with involution and let $x \in A$. Then:

- (a) Elements $x + x^*$, $i(x x^*)$, x^*x are selfadjoint.
- (b) There exist uniquely determined selfadjoint elements $u, v \in A$ such that x = u + iv. Moreover, x is normal if and only if uv = vu.
- (c) If A is unital, then $x \in G(A)$ if and only if $x^* \in G(A)$ (in this case $(x^*)^{-1} = (x^{-1})^*$).

(d)
$$\sigma(x^*) = \{\overline{\lambda} : \lambda \in \sigma(x)\}.$$

Proposition 3 (on the spectral radius and the norm of a normal element). If A is a C^* -algebra and $a \in A$ is normal, then r(a) = ||a||.

Corollary 4. Let A be an algebra with involution. Then there is at most one norm $\|\cdot\|$ such that $(A, \|\cdot\|)$ is a C^{*}-algebra.

Proposition 5 (adding a unit). Let A be a Banach algebra with involution.

- (a) A^+ is again a Banach algebra with involution, provided the involution is defined by $(a, \lambda)^* = (a^*, \overline{\lambda})$ for $(a, \lambda) \in A^+$.
- (b) If A is a C^* -algebra, then A^+ is also a C^* -algebra, if the involution is defined as in (a) and the norm on A^+ is defined by

$$||(a, \lambda)|| = \max\{|\lambda|, \sup\{||ab + \lambda b||; b \in A, ||b|| \le 1\}\}.$$

(c) If A is a C^* -algebra with no unit, then the norm defined in (b) can be expressed as

$$||(a,\lambda)|| = \sup\{||ab + \lambda b||; b \in A, ||b|| \le 1\}.$$

Remark: The norm on A^+ defined in Proposition 5(b) differs from the norm given in Proposition X.2(b). It follows from Corollary 4 that the formula from Proposition 5(b) is the unique possible.