XI.2 *-homomorphisms and Gelfand transform of C*-algebras

Definition. Let A and B be C^{*}-algebras and let $h : B \to A$. We say that h is a *-homomorphism, if it is a homomorphism of Banach algebras satisfying moreover $h(x^*) = h(x)^*$ for each $x \in B$.

Proposition 6 (on the automatic continuity of a *-homomorphism). Let A and B be C^* -algebras and let $h : B \to A$ be a *-homomorphism of B into A. Then $||h|| \leq 1$.

Example 7. Let K, L be compact Hausdorff spaces and let $\varphi : \mathcal{C}(K) \to \mathcal{C}(L)$ be a *-homomorphism satisfying $\varphi(1) = 1$. Then there is a continuous mapping $\alpha : L \to K$ such that $\varphi(f) = f \circ \alpha$ for $f \in \mathcal{C}(K)$. If φ is moreover one-to-one, then $\alpha(L) = K$, so φ is an isometry of $\mathcal{C}(K)$ into $\mathcal{C}(L)$.

Proposition 8. Let A be a C^* -algebra and let $a \in A$. Then:

- (a) If a is selfadjoint, then $\sigma(a) \subset \mathbb{R}$.
- (b) If A is unital and $a^* = a^{-1}$ (i.e., a is unitary), then

$$\sigma(a) \subset \mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$$

(c) For $h \in \Delta(A)$ and $a \in A$ one has $h(a^*) = \overline{h(a)}$ (i.e., h is a *-homomorphism whenever it is a homomorphism).

Theorem 9 (Gelfand-Naimark). Let A be a commutative C^* -algebra and let $\Gamma : A \to C_0(\Delta(A))$ be its Gelfand transform. Then Γ is an isometric *isomorphism of the C^* -algebra A onto the C^* -algebra $C_0(\Delta(A))$ (in particular $\widehat{x^*} = \overline{\hat{x}}$ for $x \in A$).

Therefore, A is unital if and only if $\Delta(A)$ is compact.

Corollary 10. Let A and B be commutative C^* -algebras. Then A and B are *-isomorphic if and only if $\Delta(A)$ and $\Delta(B)$ are homeomorphic.

Corollary 11. Let *A* and *B* be C^* -algebras and let $h : B \to A$ be a one-to-one *-homomorphism of *B* into *A*. Then *h* is an isometry of *B* into *A*.