XI.3 Continuous functional calculus in C*-algebras

Proposition 12. Let A be a C^* -algebra and $B \subset A$ its C^* -subalgebra.

- (a) For each $x \in B$ one has $\sigma_B(x) \cup \{0\} = \sigma_A(x) \cup \{0\}$.
- (b) If A has a unit e and, moreover, $e \in B$, then $\sigma_B(x) = \sigma_A(x)$ for each $x \in B$. In particular, $G(B) = B \cap G(A)$.

Theorem 13 (Fuglede). Let A be a C^* -algebra and let $x \in A$ be a normal element. If $y \in A$ commutes with x, it commutes also with x^* .

Theorem 14 (continuous functional calculus in unital C^* -algebras). Let A be a C^* -algebra with a unit e and let $x \in A$ be a normal element. Let B be the closed subalgebra of A generated by the set $\{e, x, x^*\}$. Then:

- B is a commutative C^* -algebra and e is its unit.
- The mapping $h: \varphi \mapsto \varphi(x)$ is a homeomorphism of $\Delta(B)$ onto $\sigma(x)$.

Let $\Gamma: B \to \mathcal{C}(\Delta(B))$ be the Gelfand transform of the algebra B. For $f \in \mathcal{C}(\sigma(x))$ define

$$\tilde{f}(x) = \Gamma^{-1}(f \circ h).$$

Then the mapping $\Phi : f \mapsto \tilde{f}(x)$, called the continuous functional calculus for x, enjoys the following properties:

- (a) Φ is an isometric *-isomorphism of the C*-algebra $\mathcal{C}(\sigma(x))$ onto B.
- (b) $i\tilde{d}(x) = x, \ \tilde{1}(x) = e.$
- (c) If p is a polynomial, then $\tilde{p}(x) = p(x)$.
- (d) $\sigma(f(x)) = f(\sigma(x))$ for $f \in \mathcal{C}(\sigma(x))$.
- (e) If $y \in A$ commutes with x, then y commutes with $\tilde{f}(x)$ for each $f \in \mathcal{C}(\sigma(x))$.

Moreover, Φ is the unique mapping satisfying the first two conditions.

Remark: By Proposition 12 $\sigma_A(x) = \sigma_B(x)$ in the preceding theorem, therefore we write just $\sigma(x)$.

Theorem 15 (continuous functional calculus in general C^* -algebras). Let A be a C^* -algebra (unital or not) and let $x \in A$ be a normal element. Let B be the closed subalgebra of A generated by the set $\{x, x^*\}$. Then:

- B is a commutative C^* algebra.
- The mapping $h : \varphi \mapsto \varphi(x)$ is a homeomorphism of $\Delta(B) \cup \{0\}$ onto $\sigma(x) \cup \{0\}$.

Let $\Gamma : B \to \mathcal{C}_0(\Delta(B))$ be the Gelfand transform of the algebra B. For $f \in \mathcal{C}_0(\sigma(x) \setminus \{0\})$ define

$$\tilde{f}(x) = \Gamma^{-1}(f \circ h).$$

Then the mapping $\Phi : f \mapsto \tilde{f}(x)$, called the continuous functional calculus for x, enjoys the following properties:

- (a) Φ is an isometric *-isomorphism of the C*-algebra $\mathcal{C}_0(\sigma(x) \setminus \{0\})$ onto B.
- (b) $i\tilde{d}(x) = x$.
- (c) If p is a polynomial satisfying p(0) = 0, then $\tilde{p}(x) = p(x)$.
- (d) $\sigma(\tilde{f}(x)) \cup \{0\} = f(\sigma(x) \setminus \{0\}) \cup \{0\} \text{ for } f \in \mathcal{C}_0(\sigma(x) \setminus \{0\}).$
- (e) If $y \in A$ commutes with x, then y commutes with f(x) for each $f \in C_0(\sigma(x) \setminus \{0\})$.

Moreover, Φ is the unique mapping satisfying the first two conditions.

Remarks:

- (1) By Proposition 12 $\sigma_A(x) \cup \{0\} = \sigma_B(x) \cup \{0\}$ in the preceding theorem, hence also $\sigma_A(x) \setminus \{0\} = \sigma_B(x) \setminus \{0\}$. Therefore we write just $\sigma(x)$.
- (2) The algebra B from Theorem 15 is unital, if and only if $\sigma(x) \setminus \{0\}$ is compact. Its unit may differ from the unit of A (if it exists). There are the following possibilities:
 - (a) $0 \notin \sigma_B(x) = \sigma_A(x)$. Then A is unital, the unit of A belongs to B and x is invertible (both in A and in B).
 - (b) $0 \in \sigma_A(x) \setminus \sigma_B(x)$. Then B admits a unit which is not a unit of A (either A has no unit, or it has a unit which does not belong to B) and x is invertible in B (not in A).
- (3) If $\sigma(x) \setminus \{0\}$ is compact, then $\mathcal{C}_0(\sigma(x) \setminus \{0\})$ is just $\mathcal{C}(\sigma(x) \setminus \{0\})$.
- (4) If $0 \in \sigma_A(x)$ (this happens whenever $\sigma(x) \setminus \{0\}$ is not compact, but not only in this case), then one can identify

$$\mathcal{C}_0(\sigma(x) \setminus \{0\}) = \{ f \in \mathcal{C}(\sigma_A(x)); f(0) = 0 \}.$$