XI.4 Distinguished elements of C*-algebras

Remark: In this section we define several distinguished types of elements of C^* -algebras. We will show their role in basic examples of C^* -algebras. We will use the following notation:

- $A \ldots$ a general C^* -algebra;
- $H \ldots$ a complex Hilbert spaces;
- L(H) ... the C^{*}-algebra of bounded linear operators on H (with the operator norm, the operation of composition a the involution defined as the adjoint operator);
- Ω ... a Hausdorff locally compact space;
- $C_0(\Omega)$... the C^{*}-algebra of continuous functions on Ω with limit 0 at infinity (with the supremum norm, the operation of multiplication and the involution defined as complex conjugation).

Reminder: An element $x \in A$ is selfadjoint if $x^* = x$. An element $x \in A$ is normal if $x^*x = xx^*$.

Proposition 16.

- (a) A function $f \in C_0(\Omega)$ is selfadjoint if and only if it is real-valued. Any function $f \in C_0(\Omega)$ is normal.
- (b) An operator $T \in L(H)$ is selfadjoint if and only if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every $x, y \in H$.

Reminder: Assume that A has a unit e. An element $x \in A$ is called **unitary** if $x^*x = xx^* = e$.

Proposition 17.

- (a) Any unitary element is normal.
- (b) The algebra $C_0(\Omega)$ admits a unitary element if and only if Ω is compact. A function $f \in C_0(\Omega)$ is unitary if and only if |f(t)| = 1 for each $t \in \Omega$.
- (c) An operator $T \in L(H)$ is unitary if and only if T is an isometry of H onto H.

Proposition 18 (a characterization of unitary operators). Let H and K be Hilbert spaces and $T \in L(H, K)$. Consider the following assertions:

- (i) T is unitary (i.e., $T^*T = I_H$ and $TT^* = I_K$).
- (ii) T is an isometry of H onto K.
- (iii) T is an isometry of H into K.
- (iv) $\langle Tx, Ty \rangle_K = \langle x, y \rangle_H$ for $x, y \in H$.

Then $(i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv)$. If T is assumed to be surjective, all the assertions are equivalent.

Definition.

- An element $x \in A$ is said to be a projection if $x^* = x = x^2$.
- Two projection $x, y \in A$ are called **mutually orthogonal** if xy = 0.

Proposition 19.

- (a) A function $f \in C_0(\Omega)$ is a projection if and only if it attains only values 0 and 1, i.e., if and only if $f = \chi_U$ where $U \subset \Omega$ an open compact subset.
- (b) Two projection $\chi_U, \chi_V \in C_0(\Omega)$ are mutually orthogonal if and only if $U \cap V = \emptyset$.

Proposition 20 (characterization of orthogonal projections). Let H be a Hilbert space and let $P \in L(H)$ satisfy $P^2 = P$ (i.e., P is a projection as a linear operator). The following assertions are equivalent:

- (i) *P* is an orthogonal projection, *i.e.*, ker $P \perp R(P)$.
- (ii) P is self-adjoint (i.e., P is a projection as an element of the C^* -algebra L(H)).
- (iii) P is normal.
- (iv) $\langle Px, x \rangle = ||Px||^2$ for $x \in H$.
- (v) $||P|| \le 1$.

Moreover, if $P, Q \in L(H)$ are two orthogonal projections, then $R(P) \perp R(Q)$ if and only if PQ = 0. In this case P and Q are called **mutually orthogonal**.

Remark. One more equivalent condition may be added to Proposition 20:

(vi) $\langle Px, x \rangle \ge 0$ for $x \in H$.

Implication (iv) \Rightarrow (vi) is obvious, implication (vi) \Rightarrow (ii) follows from Proposition XII.5(a) below.

Definition. An element $x \in A$ is called a **partial isometry** if elements x^*x and xx^* are projections (possibly different).

Proposition 21.

(a) Let
$$x \in A$$
. Then:

x is a partial isometry $\iff x^*x$ is a projection $\iff xx^*$ is a projection $\iff xx^* \ x = xx^*x$

- (b) A function $f \in C_0(\Omega)$ is a partial isometry if and only if |f| attains only values 0 and 1, i.e., if and only if there exists $U \subset \Omega$ compact open such that |f| = 1 on U and f = 0 on $\Omega \setminus U$.
- (c) An operator $T \in L(H)$ is a partial isometry if and only if there exists a closed subspace $Y \subset H$ such that $T|_Y$ is an isometry (of Y into H) and $T|_{Y^{\perp}} = 0$.