XII. Operators on a Hilbert space

Convention. In this chapter we consider the Banach spaces over the complex field (unless the converse is explicitly stated). In particular, the Hilbert spaces we deal with are the complex ones.

XII.1 More on bounded operators and their spectra

Remark:

- If X is a Banach space, then L(X) (with the operation of composition and the operator normo) is a Banach algebra. Therefore all the notions and theorems from Chapter X (e.g. spectrum, the resolvent set, holomorphic calculus etc.) may be applied in this algebra.
- If H is a Hilbert space, then L(H) is even a C^* -algebra (the involution is defined as the adjoint operator), hence also the notions and theorems from Chapter XI may be used (e.g., the continuous function calculus).

Definition. Let X be a Banach space, $T \in L(X)$ and $\lambda \in \sigma(T)$.

- We say that λ is an **eigenvalue** of T if $\lambda I T$ is not one-to-one, i.e., whenever there is $x \in X \setminus \{o\}$ such that $Tx = \lambda x$ (then x is an **eigenvector** associated to λ). The set of all the eigenvalues is called the **point spectrum** of T and is denoted by $\sigma_p(T)$.
- We say that λ is an **approximate eigenvalue** of T if there is a sequence of vectors (x_n) of norm one such that $(\lambda I T)x_n \rightarrow o$. The set of all the approximate eigenvalues is called the **approximate point spectrum** of T and is denoted by $\sigma_{ap}(T)$.
- We say that λ belongs to the **continuous spectrum** $\sigma_c(T)$ if $\lambda I T$ is one-to-one, has dense range but is not onto.
- We say that λ belongs to the residual spectrum $\sigma_r(T)$ (also called compression spectrum) if $\lambda I T$ is one to one and its range is not dense.

Proposition 1 (on subsets of the spectrum). Let X be a Banach space and $T \in L(X)$. Then the following assertions hold:

- (a) $\sigma_p(T) \subset \sigma_{ap}(T)$.
- (b) $\lambda \in \mathbb{C} \setminus \sigma_{ap}(T)$ if and only if $\lambda I T$ is an isomorphism of X into X.
- (c) $\sigma(T) = \sigma_{ap}(T) \cup \sigma_r(T)$.
- (d) $\sigma_c(T) = \sigma_{ap}(T) \setminus (\sigma_p(T) \cup \sigma_r(T))) = \sigma(T) \setminus (\sigma_p(T) \cup \sigma_r(T)).$
- (e) $\lambda \in \sigma_r(T) \setminus \sigma_{ap}(T)$ if and only if $\lambda I T$ is an isomorphism of X onto a proper closed subspace of X.

Definition. Let H be a Hilbert space and $T \in L(H)$.

- The numerical range of T is the set $W(T) = \{ \langle Tx, x \rangle ; x \in H, ||x|| = 1 \}.$
- The **numerical radius** of T is defined by

$$w(T) = \sup\{|\lambda|; \lambda \in W(T)\} = \sup\{|\langle Tx, x \rangle|; x \in H, ||x|| = 1\}.$$

Lemma 2 (polarization formula for an operator). Let H be a Hilbert space and $T \in L(H)$. For each $x, y \in H$ the following formula holds:

$$\langle Tx, y \rangle = \frac{1}{4} \left(\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle + i \left\langle T(x+iy), x+iy \right\rangle - i \left\langle T(x-iy), x-iy \right\rangle \right)$$

Proposition 3 (properties of the numerical radius). Let H be a Hilbert space.

(a) The numerical radius w is an equivalent norm on L(H) satisfying $\frac{1}{2} ||T|| \le w(T) \le ||T||$ for $T \in L(H)$.

- (b) If $T \in L(H)$ satisfies $\langle Tx, x \rangle = 0$ for all $x \in H$, then T = 0.
- (c) If $S, T \in L(H)$ satisfy $\langle Tx, x \rangle = \langle Sx, x \rangle$ for all $x \in H$, then S = T.
- (d) W(T) is a connected subset of \mathbb{C} for $T \in L(H)$.
- (e) $\sigma_p(T) \subset W(T)$ and $\sigma(T) \subset \overline{W(T)}$ for $T \in L(H)$.
- (f) $w(T) \ge r(T)$ for $T \in L(H)$.

Proposition 4 (structure of normal operators). Let H be a Hilbert space and $T \in L(H)$. The operator T is normal if and only if $||Tx|| = ||T^*x||$ for each $x \in H$. If T is normal, then the following assertions hold.

- (a) ker $T = \ker T^*$ and ker $T = (R(T))^{\perp}$.
- (b) R(T) is dense if and only if T is one-to-one. Hence, $\sigma_r(T) = \emptyset$ and $\sigma(T) = \sigma_{ap}(T)$.
- (c) If $\lambda \in \mathbb{C}$ and $x \in H$ then $Tx = \lambda x$ if and only if $T^*x = \overline{\lambda}x$. In particular,

$$\sigma_p(T^*) = \{\overline{\lambda}; \lambda \in \sigma_p(T)\}.$$

(d) If $\lambda_1, \lambda_2 \in \sigma_p(T)$ are distinct, then $\ker(\lambda_1 I - T) \perp \ker(\lambda_2 I - T)$.

Proposition 5 (spectrum of a self-adjoint operator). Let H be a Hilbert space and $T \in L(H)$.

- (a) T is self-adjoint if and only if $W(T) \subset \mathbb{R}$.
- (b) Assume T is self-adjoint and set $a = \inf W(T)$ and $b = \sup W(T)$. Then $\sigma(T) \subset [a, b]$, $a, b \in \sigma(T), ||T|| = \max\{|a|, |b|\}$ and $\sigma(T)$ contains one of the numbers ||T||, -||T||.
- (c) $W(T) \subset [0,\infty)$ if and only if T is self-adjoint and $\sigma(T) \subset [0,\infty)$.

Remarks and definitions.

- (1) Operators satisfying the equivalent conditions from Proposition 5(c) are called **positive**.
- (2) T^*T is a positive operator for any $T \in L(H)$.
- (3) If $T \in L(H)$, we define $|T| = \sqrt{T^*T}$ (i.e., we apply the continuous function $t \mapsto \sqrt{t}$ to the positive operator T^*T).
- (4) If T is normal, then the operator |T| defined above coincides with the operator obtained by applying the continuous function $\lambda \mapsto |\lambda|$ to the operator T. If T is not normal, then $|T| \neq |T^*|$.

Theorem 6 (polar decomposition). Let H be a Hilbert space and $T \in L(H)$. Then there is a unique partial isometry $U \in L(H)$ such that T = U |T| and U = 0 on $R(|T|)^{\perp}$.

Moreover, U^* is also a partial isometry and $|T| = U^*T$ and $U^* = 0$ on $R(T)^{\perp}$.

Remarks: As specified above, all the statements hold for complex spaces. For real spaces some of the statements hold in the same way, some require a modification and some do not hold at all. More precisely:

- The adjoint operator may be defined in the real case in the same way. Proposition 4 requires a modification for real spaces.
- The spectrum is considered only in complex spaces, for real spaces (note that λ would be also real) it could be empty. The numerical range and radius may be of course defined in the real case as well. But Lemma 2 does not hold for real spaces (neither any analogue). This is related to the fact that assertions (a)-(c) from Proposition 3 and assertions (a),(c) from Proposition 5 fail in the real case. It may happen that a nonzero operator has zero numerical radius.
- Some statements remain to be true in the real case at least for self-adjoint operators (for example Proposition 5(b)). We will analyze the situation later, at the end of Chapter XIII.