FUNCTIONAL ANALYSIS 2

SUMMER SEMESTER 2023/2024

PROBLEMS TO CHAPTER XI

Problem 1. Show that the Banach algebra $\ell^1(\mathbb{Z})$ (see Problem 12 to Chapter X) admits no involution and equivalent norm making it a C^* -algebra.

Hint: Consider the Gelfand transform (see Problem 41 to Chapter X) and show that its range is a proper dense subspace of $\mathcal{C}(\mathbb{T})$. Then use Theorem XI.9.

Problem 2. Show that the Banach algebra $L^1(\mathbb{R})$ (see Problem 14 to Chapter X) admits no involution and equivalent norm making it a C^* -algebra.

Hint: Consider the Gelfand transform and its relationship to the Fourier transform (see Problem 43 to Chapter X), use the known fact, that the Fourier transform is not onto $\mathcal{C}_0(\mathbb{R}^n)$ and Theorem XI.9.

Problem 3. Let $A = \mathcal{C}(K)$, let $g \in A$ and let F be a function continuous on $\sigma(g) = g(K)$. Show that $\tilde{F}(g) = F \circ g$.

- **Problem 4.** (1) Let A be a commutative C^* -algebra and $x \in A$. Show that x is self-adjoint if and only if $\sigma(x) \subset \mathbb{R}$.
 - (2) Is this equivalence valid also for non-commutative C^* -algebras?

Hint: (1) For \Rightarrow use Proposition XI.8. For the converse note that the statement is valid in $C_0(T)$ and use Theorem XI.9. (2) Find a counterxample to \Leftarrow in the matrix algebra M_2 .

Problem 5. Let A be a C^{*}-algebra. An element $x \in A$ is called **positive** if it is self-adjoint and $\sigma(x) \subset [0, +\infty)$.

Show that each self-adjoint element may be expressed as a difference of two positive elements.

Hint: Use the continuous function calculus for functions $t \mapsto t^+$ and $t \mapsto t^-$.

Problem 6. Let A be a unital C*-algebra, $x \in A$ a normal element and $f \in \mathcal{C}(\sigma(x))$.

- (1) Show that f(x) is a normal element.
- (2) Show that f(x) is a self-adjoint element if and only if the function f attains only real values.
- (3) Show that f(x) is a positive element if and only if the function f attains only non-negative values.
- (4) Show that f(x) is an invertible element if and only if the function f does not attain the value 0.

Problem 7. Let A be a C*-algebra and let $x, y \in A$ be two positive elements which commute (i.e., xy = yx). Show that xy is a positive element as well.

Hint: Let B be a closed subalgebra of A generated by x and y. Then B is a commutative C^* -algebra. Use Theorem XI.9 and the fact that the statement is valid in $\mathcal{C}_0(\Omega)$.

Problem 8. Let A be a C^{*}-algebra with a unit e and let $x \in A$ be a normal element. Denote by B the closed subalgebra of A generates by the elements x, x^*, e and by B_0 the closed subalgebra of A generates by the elements x, x^* .

- (1) Show that $B = B_0$ if and only if x is invertible in A.
- (2) Let $f \in \mathcal{C}(\sigma(x))$. Show that $f(x) \in B$.
- (3) Let $f \in \mathcal{C}(\sigma(x))$. Show that $f(x) \in B_0$ if and only if either x is invertible or f(0) = 0.

Hint: (1) The implication \Leftarrow is obvious. If x is not invertible, deduce from Theorem XI.15 that B_0 does not contain e. (2) Use Theorem XI.14. (3) The implication \Leftarrow follows from (1) and Theorem XI.15. Assume that x is not invertible (i.e., $0 \in \sigma(x)$) and $f(0) \neq 0$. Since the function calculus is an isomorphism of $C(\sigma(x))$ onto B and simultaneously an isomorphism of $C_0(\sigma(x) \setminus \{0\})$ onto B_0 , it is enough to observe that $f \notin C_0(\sigma(x) \setminus \{0\})$.

Problem 9. Consider the situation from Problem 8 and, moreover, fix $f \in C(\sigma(x))$. Denote by D the closed subalgebra of A generates by the elements $\tilde{f}(x), \tilde{f}(x)^*, e$ and by D_0 the closed subalgebra of A generates by the elements $\tilde{f}(x), \tilde{f}(x)^*$.

- (1) Show that $D \subset B$ and $D_0 \subset B_0$.
- (2) Show that $D = D_0$ if and only if f does not attain the value zero.
- (3) Consider the diagram

$$\begin{array}{c|c} \Delta(B) & \xrightarrow{h_x} \sigma(x) & , \\ & r \\ & \downarrow f & \\ \Delta(D) & \xrightarrow{h_{\tilde{f}(x)}} \sigma(\tilde{f}(x)) \end{array}$$

where $r(\varphi) = \varphi|_D$ for $\varphi \in \Delta(B)$ and h_x and $h_{\tilde{f}(x)}$ are the mapping from the construction of the continuous calculus in Theorem XI.14, i.e., $h_x(\varphi) = \varphi(x)$ and $h_{\tilde{f}(x)}(\psi) = \psi(\tilde{f}(x))$. Show that this diagram commutes, i.e., $f \circ h_x = h_{\tilde{f}(x)} \circ r$.

(4) Deduce that for each $g \in \mathcal{C}(\sigma(\tilde{f}(x)))$ we have $\tilde{g}(\tilde{f}(x)) = \widetilde{g \circ f}(x)$.

Hint: (2) Use Problem 8(1). (3) It is necessary to show that $\varphi(\tilde{f}(x)) = f(\varphi(x))$. To this end use the definition of the continuous function calculus and the definition of the Gelfand transform. (4) Use (3) and the definition of the continuous function calculus.

Problem 10. Let A be a C^* -algebra and let $x \in A$ be a positive element.

- (1) Show that there exists a positive element $y \in A$ such that $y^2 = x$.
- (2) Is such y unique?

Hint: (1) Use the continuous calculus for the function $t \mapsto \sqrt{t}$ to the element x. (2) Let z be a positive element satisfying $z^2 = x$ and let y be the element obtain by the way described in (1). Using Problem 9(4) applied to $f(t) = t^2$ and $g(t) = \sqrt{t}$ show that z = y.