
FUNCTIONAL ANALYSIS 2

SUMMER SEMESTER 2023/2024

PROBLEMS TO CHAPTER XIII

Problems to Section XIII.1 – measurable calculus for bounded normal
operators

Problem 1. Let H = ℓ2 and let z = (zn) be a bounded sequence of complex numbers. For
x = (xn) ∈ H set Mz(x) = (znxn). We know (from Problems 15, 25 and 31 to Chapter

XII) that Mz is a bounded normal operator, ∥Mz∥ = ∥z∥∞ and σ(Mz) = {zn;n ∈ N}.
(1) Let f ∈ C(σ(Mz)). Show that f̃(Mz) =Mf◦z, where f ◦ z = (f(zn)).
(2) Let (en) be the canonical orthonormal basis of H. Show that Een,en = δzn (the

Dirac measure supported by zn) and Een,em = 0 for m,n ∈ N, m ̸= n.
(3) Let x = (xn) ∈ H and y = (yn) ∈ H. Show that Ex,y =

∑∞
n=1 xnynδzn .

(4) Deduce that A, the domain σ-algebra of the spectral measure of Mz contains all
subsets of σ(Mz).

(5) Let g : σ(Mz) → C be any bounded function. Show that g̃(Mz) =Mg◦z.
(6) Let A ⊂ σ(Mz) be arbitrary. Show that E(A) (the value of the spectral measure

of Mz) is given by

E(A)(x) =
∑

n∈N,zn∈A

xnen, x = (xn) ∈ H.

Hint: (1) Use the ‘moreover part’ of Theorem XI.14. (3) For finitely supported vectors use

(2) and Proposition XIII.2(a,b). For general x,y set xn =
∑n

j=1 xjej and yn =
∑n

j=1 yjej,

show that ⟨Txn,yn⟩ → ⟨Tx,y⟩ for any T ∈ L(H) and apply it for f̃(Mz). (6) Apply (5) to the

characteristic function of A.

Problem 2. Let H = ℓ2(Γ), where Γ is any set (possibly uncountable). Let φ : Γ → C
be a bounded function. For f ∈ H set Mφ(f) = φ · f .

(1) Show that this is a special case of the operator from Problem 17 to Chapter XII.
Deduce that Mφ is a bounded linear operator and ∥Mφ∥ = ∥φ∥∞.

(2) Using Problem 32 to Chapter XII show that Mφ is a normal operator.

(3) Using Problem 26 to Chapter XII show that σ(Mφ) = φ(Γ).

(4) Let f ∈ C(σ(Mφ)). Show that f̃(Mφ) =Mf◦φ.
(5) Let (eγ)γ∈Γ be the canonical orthonormal basis of H. Show that Eeγ ,eγ = δφ(γ)

(the Dirac measure supported by φ(γ)) and Eeγ ,eδ = 0 for γ, δ ∈ Γ, γ ̸= δ.

(6) Let f, g ∈ H. Show that Ef,g =
∑

γ∈Γ f(γ)g(γ)δφ(γ).

(7) Deduce that A, the domain σ-algebra of the spectral measure of Mφ contains all
subsets of σ(Mφ).

(8) Let g : σ(Mφ) → C be any bounded function. Show that g̃(Mφ) =Mg◦φ.
(9) Let A ⊂ σ(Mφ) be arbitrary. Show that E(A) (the value of the spectral measure

of Mφ) equals Mχφ−1(A)
.
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Hint: (4) Use the ‘moreover part’ of Theorem XI.14. (6) For finitely supported vectors use

(5) and Proposition XIII.2(a,b). For general g, h and a finite set F ⊂ Γ denote gF = χF · g
and hF = χF · h, show that ⟨TgF , hF ⟩

F→ ⟨Tg, h⟩ (this is the limit of a net indexed by the up-

directed set of finite subsets of Γ) for any T ∈ L(H) and apply it for f̃(Mφ). (9) Apply (8) to

the characteristic function of A.

Problem 3. LetH = L2((0, 1)) and let φ : (0, 1) → C be a bounded Lebesgue measurable
function. For f ∈ H set Mφ(f) = φ · f .

(1) Show that this is a special case of the operator from Problem 17 to Chapter XII.
Deduce that Mφ is a bounded linear operator and ∥Mφ∥ = ∥φ∥∞.

(2) Using Problem 32 to Chapter XII show that Mφ is a normal operator.
(3) Using Problem 26 to Chapter XII show that σ(Mφ) is the essential range of φ.

(4) In case φ is continuous on (0, 1), deduce that σ(Mφ) = φ((0, 1)).

(5) Let f ∈ C(σ(Mφ)). Show that f̃(Mφ) =Mf◦φ.
(6) Assume that (ψn) is a uniformly bounded sequence of Lebesgue measurable functi-

ons on (0, 1) converging almost everywhere to a function ψ. Show that Mψn(f) →
Mψf in H for each f ∈ H.

(7) Let g ∈ L∞(EMφ). Show that g̃(Mφ) =Mg◦φ.
(8) Let A ⊂ σ(Mφ) be a Borel set. Show that E(A) (the value of the spectral measure

of Mφ) equals Mχφ−1(A)
.

Hint: (5) Use the ‘moreover part’ of Theorem IV.38. (6) Use Lebesgue dominated convergence

theorem. (7) Let (fn) be a sequence provided by Lemma XIII.3(b). Next combine (5,6) and

Theorem XIII.4(b). (8) Apply (7) to the characteristic function of A.

Problem 4. Let H = ℓ2(Z) and let S ∈ L(H) be defined by S((xn)) = (xn−1). By
Problem 5 to Chapter XII we know that S is a unitary (hence normal) operator and
σ(S) = T = {λ ∈ C; |λ| = 1}.

(1) Let K = L2((0, 2π), µ), where µ is the normalized Lebesgue measure. For n ∈ Z
set φn(t) = eint, t ∈ (0, 2π). Show that U : H → K defined by U((xn)) =

∑
n xnφn

(the series is considered in the Hilbert space K) is a unitary operator.
(2) Show that S = U∗Mφ1U .
(3) Compute the values of continuous or measurable calculus applied to S and the

spectral measure of S.

Hint: (1) Use known facts from the theory of Fourier series. (3) Use (2) and Problem 3. For

example, f̃(S) = U∗f̃(Mφ1)U etc.



Problems to Section XIII.2 – integral with respect to a spectral
measure

Problem 5. Let Γ be any set and φ : Γ → C any mapping. For A ⊂ C let E(A) be the
projection on ℓ2(Γ) defined by E(A)(f) = f · χφ−1(A), f ∈ ℓ2(Γ), i.e.,

E(A)(f)(γ) =

{
f(γ) if φ(γ) ∈ A,

0 otherwise,
f ∈ ℓ2(Γ).

(1) Show that E is an abstract spectral measure in ℓ2(Γ) defined on the σ-algebra of
all subsets of C.

(2) Show that E is compactly supported if and only if φ is bounded.
(3) Describe the measures Ef,g, f, g ∈ ℓ2(Γ).
(4) Let ψ : C → C be any function. Show that

∫
ψ dE = Mψ◦φ (using the notation

from Problem 17 to Chapter XII).

Problem 6. Let (Ω,Σ, µ) be a complete measure space with µ semifinite and let φ :
Ω → C be a Σ-measurable function. Set A = {A ⊂ C;φ−1(A) ∈ Σ}. For A ∈ A let
E(A) =Mχφ−1(A)

(using the notation from Problem 17 to Chapter XII).

(1) Show that E is an abstract spectral measure in L2(µ) defined on the σ-algebra A.
(2) Show that E is compactly supported if and only if φ is essentially bounded.
(3) Describe the measures Ef,g, f, g ∈ L2(µ).
(4) Let ψ : C → C be any A-measurable function. Show that

∫
ψ dE =Mψ◦φ.

Problem 7. (1) Show that the inclusion in Theorem XIII.12(a) may be strict.
(2) Show that the inclusion in Theorem XIII.12(b) may be strict.

Hint: (1) Take f unbounded and g = −f . (2) Take g to be strictly positive and unbounded

and f = 1
g .

Problem 8. Let T be a nonzero compact normal operator on a Hilbert space. Show that
T may be expressed in the form

Tx =
N∑
n=1

λn ⟨x, xn⟩xn, x ∈ H,

where N ∈ N or N = +∞, (xn)
N
n=1 is an orthonormal system and λn are nonzero complex

numbers satisfying λn → 0 if N = +∞. (I.e., an analogue of the Hilbert Schmidt theorem
– Theorem III.38 from Introduction to functional analysis – holds, just the coefficients λn
need not be real.)

Hint: Proceed similarly as in the selfadjoint case – use the description of the spectrum of a

compact operator (Theorem III.35) and the fact that eigenvectors associated to different eigen-

values are orthogonal (Proposition XII.4(d)).



Problem 9. Let H be an infinite-dimensional Hilbert space and let T be a nonzero
compact normal operator on H. Consider the formula for T provided by Problem 8.

(1) Show that σ(T ) = {0} ∪ {λn;n ∈ N, n ≤ N}.
(2) Let f : σ(T ) → C be a bounded function. Show that f is always Borel measurable

and it is continuous if and only if f(λn) → 0.

(3) Let f : σ(T ) → C be a continuous function satisfying f(0) = 0. Show that f̃(T )
is also a compact operator and that

f̃(T )x =
N∑
n=1

f(λn) ⟨x, xn⟩xn, x ∈ H.

(4) Let f : σ(T ) → C be a continuous function satisfying f(0) ̸= 0. Show that

f(0)I − f̃(T ) is a compact operator (and hence f̃(T ) is not compact) and that

f̃(T )x = f(0)Px+
N∑
n=1

f(λn) ⟨x, xn⟩xn

= f(0)x+
N∑
n=1

(f(λn)− f(0)) ⟨x, xn⟩xn, x ∈ H,

where P is the orthogonal projection onto KerT .

Hint: (3),(4): Use Theorems XI.14 and XI.15, in particular their ‘moreover parts’.

Problem 10. Let H and T be as in Problem 9.

(1) Let E be the spectral measure of T . Show that E is defined on the σ-algebra of
all subsets of C and that, given A ⊂ C, E(A) is the orthogonal projection onto

span
⋃

{Ker(λnI − T );λn ∈ A}

if 0 /∈ A and the orthogonal projection onto

KerT ⊕ span
⋃

{Ker(λnI − T );λn ∈ A}

if 0 ∈ A.
(2) Let f : σ(T ) → C be a bounded function. Show that f̃(T ) may be expressed by

the formula from Problem 9(4).

(3) Characterize bounded functions f for which f̃(T ) is a compact operator.
(4) Let f : σ(T ) → C be an unbounded function. Describe the operator

∫
f dE (i.e.,

find its domain and a formula).

Problems to Section XIII.4 - unbounded normal operators

Problem 11. Consider the operators T =Mz from Problem 15 to Chapter XII on ℓ2 or
T =Mg from Problem 17 to Chapter XII on L2(µ).

(1) Show that these operators are normal.
(2) Compute the operators B and C from Lemma XIII.19.
(3) Compute the projections Pj from Theorem XIII.21.



Problem 12. Let E be an abstract spectral measure in a Hilbert space H defined on a
σ-algebra A. Let f : C → C be an A-measurable function and T =

∫
f dE.

(1) Show that the operator T is normal.
(2) Compute the operators B and C from Lemma XIII.19.
(3) Compute the projections Pj from Theorem XIII.21.

Problem 13. Let k ∈ Z and let z = (zn)n∈Z be a fixed sequence of complex numbers.
Define an operator T on ℓ2(Z) by the formula

T ((xn)n∈Z) = (zn+kxn+k)n∈Z, (xn) ∈ D(T ) = {(yn) ∈ ℓ2(Z); (zn+kyn+k) ∈ ℓ2(Z).

(1) Show that T is a closed densely defined operator.
(2) Compute T ∗.
(3) Compute T ∗T and TT ∗.
(4) Under which conditions is T normal? Under which conditions is T self-adjoint?
(5) Compute the operators B and C from Lemma XIII.19.

Problem 14. Let r ∈ R and let ψ : R → C be a fixed measurable function. Define an
operator T on L2(R) by the formula

T (f)(t) = ψ(t+ r) · f(t+ r), t ∈ R, f ∈ L2(R).

(1) Show that T is a closed densely defined operator.
(2) Compute T ∗.
(3) Compute T ∗T and TT ∗.
(4) Under which conditions is T normal? Under which conditions is T self-adjoint?
(5) Compute the operators B and C from Lemma VI.19.

Problems to Section XIII.5 - diagonalization of operators

Problem 15. Let H,K be two Hilbert spaces and let U : H → K be a unitary operator
(i.e., an onto isometry). Let T be an operator on H. Set S = UTU−1. Show that operator
T and S have same properties. In particular:

(1) S is closed or densely defined if and only if T has the respective property.
(2) σ(S) = σ(T ) and S, T have the same eigenvalues.
(3) S∗ = UT ∗U−1.
(4) S is selfadjoint (symmetric, maximal symmetric, normal) if and only if T has the

respective property.
(5) Suppose that T is normal. Let ET be the spectral measure of T , let AT be its

domain σ-algebra. Similary, let ES be the spectral measure of S and AS be its
domain σ-algebra. Then AS = AT and ES(A) = UET (A)U

−1 for A ∈ AT .

Problem 16. Let U : L2((0, 2π)) → ℓ2(Z) be the isometry known from the theory of
Fourier series, i.e.,

U(f)(n) =
1

2π

∫ 2π

0

f(t)e−int dt, n ∈ Z, f ∈ L2((0, 2π)).

Consider the operator Tj, j = 1, . . . , 6, on L2((0, 2π)) defined analogously as the operators
from Problem 22 to Chapter XII.

(1) Compute the operators UTjU
−1 for j = 1, . . . , 6.

(2) Compute the spectral measure of the operator T5.



Hint: (1) Use integration by parts. Moreover, for f ∈ D(T1) show that f(0) − f(2π) =

limn→±∞ 2πinf̂(n) and that 1
2(f(0) + f(2π)) =

∑
n∈Z f̂(n) (by f̂(n) we denote the Fourier

coefficients; to prove the second equality use the Jordan-Dirichlet criterion).

Problem 17. Let P : L2(R) → L2(R) be the Plancherel transform, i.e., the extension to
L2(R) of the Fourier transform restricted to L1(R) ∩ L2(R). It can be expressed by the
formula

P(f) = lim
r→∞

(
t 7→ 1

2π

∫ r

−r
f(x)e−itx dx

)
(the limit taken in L2(R)).

Consider the operator T1 from Problem 24 to Chapter XII on L2(R).
(1) Compute the operators PT1P−1.
(2) Compute the spectral measure of the operator T1.


