FUNCTIONAL ANALYSIS 2

SUMMER SEMESTER 2023/2024
PROBLEMS TO CHAPTER XIII

Problems to Section XIII. 1 - measurable calculus for bounded normal OPERATORS

Problem 1. Let $H=\ell^{2}$ and let $\boldsymbol{z}=\left(z_{n}\right)$ be a bounded sequence of complex numbers. For $\boldsymbol{x}=\left(x_{n}\right) \in H$ set $M_{z}(\boldsymbol{x})=\left(z_{n} x_{n}\right)$. We know (from Problems 15, 25 and 31 to Chapter XII) that M_{z} is a bounded normal operator, $\left\|M_{z}\right\|=\|\boldsymbol{z}\|_{\infty}$ and $\sigma\left(M_{z}\right)=\overline{\left\{z_{n} ; n \in \mathbb{N}\right\}}$.
(1) Let $f \in \mathcal{C}\left(\sigma\left(M_{z}\right)\right)$. Show that $\widetilde{f}\left(M_{z}\right)=M_{f \circ \boldsymbol{z}}$, where $f \circ \boldsymbol{z}=\left(f\left(z_{n}\right)\right)$.
(2) Let $\left(\boldsymbol{e}_{n}\right)$ be the canonical orthonormal basis of H. Show that $E_{\boldsymbol{e}_{n}, \boldsymbol{e}_{n}}=\delta_{z_{n}}$ (the Dirac measure supported by z_{n}) and $E_{\boldsymbol{e}_{n}, \boldsymbol{e}_{m}}=0$ for $m, n \in \mathbb{N}, m \neq n$.
(3) Let $\boldsymbol{x}=\left(x_{n}\right) \in H$ and $\boldsymbol{y}=\left(y_{n}\right) \in H$. Show that $E_{\boldsymbol{x}, \boldsymbol{y}}=\sum_{n=1}^{\infty} x_{n} \overline{y_{n}} \delta_{z_{n}}$.
(4) Deduce that \mathcal{A}, the domain σ-algebra of the spectral measure of M_{z} contains all subsets of $\sigma\left(M_{z}\right)$.
(5) Let $g: \sigma\left(M_{z}\right) \rightarrow \mathbb{C}$ be any bounded function. Show that $\widetilde{g}\left(M_{z}\right)=M_{g \circ z}$.
(6) Let $A \subset \sigma\left(M_{z}\right)$ be arbitrary. Show that $E(A)$ (the value of the spectral measure of M_{z}) is given by

$$
E(A)(\boldsymbol{x})=\sum_{n \in \mathbb{N}, z_{n} \in A} x_{n} \boldsymbol{e}_{n}, \quad \boldsymbol{x}=\left(x_{n}\right) \in H .
$$

Hint: (1) Use the 'moreover part' of Theorem XI.14. (3) For finitely supported vectors use (2) and Proposition XIII.2(a,b). For general $\boldsymbol{x}, \boldsymbol{y}$ set $\boldsymbol{x}_{n}=\sum_{j=1}^{n} x_{j} \boldsymbol{e}_{j}$ and $\boldsymbol{y}_{n}=\sum_{j=1}^{n} y_{j} \boldsymbol{e}_{j}$, show that $\left\langle T \boldsymbol{x}_{n}, \boldsymbol{y}_{n}\right\rangle \rightarrow\langle T \boldsymbol{x}, \boldsymbol{y}\rangle$ for any $T \in L(H)$ and apply it for $\widetilde{f}\left(M_{z}\right)$. (6) Apply (5) to the characteristic function of A.

Problem 2. Let $H=\ell^{2}(\Gamma)$, where Γ is any set (possibly uncountable). Let $\varphi: \Gamma \rightarrow \mathbb{C}$ be a bounded function. For $f \in H$ set $M_{\varphi}(f)=\varphi \cdot f$.
(1) Show that this is a special case of the operator from Problem 17 to Chapter XII. Deduce that M_{φ} is a bounded linear operator and $\left\|M_{\varphi}\right\|=\|\varphi\|_{\infty}$.
(2) Using Problem 32 to Chapter XII show that M_{φ} is a normal operator.
(3) Using Problem 26 to Chapter XII show that $\sigma\left(M_{\varphi}\right)=\overline{\varphi(\Gamma)}$.
(4) Let $f \in \mathcal{C}\left(\sigma\left(M_{\varphi}\right)\right)$. Show that $\widetilde{f}\left(M_{\varphi}\right)=M_{f \circ \varphi}$.
(5) Let $\left(\boldsymbol{e}_{\gamma}\right)_{\gamma \in \Gamma}$ be the canonical orthonormal basis of H. Show that $E_{\boldsymbol{e}_{\gamma}, \boldsymbol{e}_{\gamma}}=\delta_{\varphi(\gamma)}$ (the Dirac measure supported by $\varphi(\gamma)$) and $E_{e_{\gamma}, e_{\delta}}=0$ for $\gamma, \delta \in \Gamma, \gamma \neq \delta$.
(6) Let $f, g \in H$. Show that $E_{f, g}=\sum_{\gamma \in \Gamma} f(\gamma) g(\gamma) \delta_{\varphi(\gamma)}$.
(7) Deduce that \mathcal{A}, the domain σ-algebra of the spectral measure of M_{φ} contains all subsets of $\sigma\left(M_{\varphi}\right)$.
(8) Let $g: \sigma\left(M_{\varphi}\right) \rightarrow \mathbb{C}$ be any bounded function. Show that $\widetilde{g}\left(M_{\varphi}\right)=M_{g \circ \varphi}$.
(9) Let $A \subset \sigma\left(M_{\varphi}\right)$ be arbitrary. Show that $E(A)$ (the value of the spectral measure of M_{φ}) equals $M_{\chi_{\varphi-1}(A)}$.

Hint: (4) Use the 'moreover part' of Theorem XI.14. (6) For finitely supported vectors use (5) and Proposition XIII.2(a,b). For general g, h and a finite set $F \subset \Gamma$ denote $g_{F}=\chi_{F} \cdot g$ and $h_{F}=\chi_{F} \cdot h$, show that $\left\langle T g_{F}, h_{F}\right\rangle \xrightarrow{F}\langle T g, h\rangle$ (this is the limit of a net indexed by the updirected set of finite subsets of Γ) for any $T \in L(H)$ and apply it for $\widetilde{f}\left(M_{\varphi}\right)$. (9) Apply (8) to the characteristic function of A.

Problem 3. Let $H=L^{2}((0,1))$ and let $\varphi:(0,1) \rightarrow \mathbb{C}$ be a bounded Lebesgue measurable function. For $f \in H$ set $M_{\varphi}(f)=\varphi \cdot f$.
(1) Show that this is a special case of the operator from Problem 17 to Chapter XII. Deduce that M_{φ} is a bounded linear operator and $\left\|M_{\varphi}\right\|=\|\varphi\|_{\infty}$.
(2) Using Problem 32 to Chapter XII show that M_{φ} is a normal operator.
(3) Using Problem 26 to Chapter XII show that $\sigma\left(M_{\varphi}\right)$ is the essential range of φ.
(4) In case φ is continuous on $(0,1)$, deduce that $\sigma\left(M_{\varphi}\right)=\overline{\varphi((0,1))}$.
(5) Let $f \in \mathcal{C}\left(\sigma\left(M_{\varphi}\right)\right)$. Show that $\widetilde{f}\left(M_{\varphi}\right)=M_{f \circ \varphi}$.
(6) Assume that $\left(\psi_{n}\right)$ is a uniformly bounded sequence of Lebesgue measurable functions on $(0,1)$ converging almost everywhere to a function ψ. Show that $M_{\psi_{n}}(f) \rightarrow$ $M_{\psi} f$ in H for each $f \in H$.
(7) Let $g \in L^{\infty}\left(E_{M_{\varphi}}\right)$. Show that $\widetilde{g}\left(M_{\varphi}\right)=M_{g \circ \varphi}$.
(8) Let $A \subset \sigma\left(M_{\varphi}\right)$ be a Borel set. Show that $E(A)$ (the value of the spectral measure of M_{φ}) equals $M_{\chi_{\varphi}-1(A)}$.

Hint: (5) Use the 'moreover part' of Theorem IV.38. (6) Use Lebesgue dominated convergence theorem. (7) Let $\left(f_{n}\right)$ be a sequence provided by Lemma XIII.3(b). Next combine (5,6) and Theorem XIII.4(b). (8) Apply (7) to the characteristic function of A.

Problem 4. Let $H=\ell^{2}(\mathbb{Z})$ and let $S \in L(H)$ be defined by $S\left(\left(x_{n}\right)\right)=\left(x_{n-1}\right)$. By Problem 5 to Chapter XII we know that S is a unitary (hence normal) operator and $\sigma(S)=\mathbb{T}=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$.
(1) Let $K=L^{2}((0,2 \pi), \mu)$, where μ is the normalized Lebesgue measure. For $n \in \mathbb{Z}$ set $\varphi_{n}(t)=e^{i n t}, t \in(0,2 \pi)$. Show that $U: H \rightarrow K$ defined by $U\left(\left(x_{n}\right)\right)=\sum_{n} x_{n} \varphi_{n}$ (the series is considered in the Hilbert space K) is a unitary operator.
(2) Show that $S=U^{*} M_{\varphi_{1}} U$.
(3) Compute the values of continuous or measurable calculus applied to S and the spectral measure of S.

Hint: (1) Use known facts from the theory of Fourier series. (3) Use (2) and Problem 3. For example, $\tilde{f}(S)=U^{*} \tilde{f}\left(M_{\varphi_{1}}\right) U$ etc.

Problems to Section XIII. 2 - integral with respect to a Spectral MEASURE

Problem 5. Let Γ be any set and $\varphi: \Gamma \rightarrow \mathbb{C}$ any mapping. For $A \subset \mathbb{C}$ let $E(A)$ be the projection on $\ell^{2}(\Gamma)$ defined by $E(A)(f)=f \cdot \chi_{\varphi^{-1}(A)}, f \in \ell^{2}(\Gamma)$, i.e.,

$$
E(A)(f)(\gamma)=\left\{\begin{array}{ll}
f(\gamma) & \text { if } \varphi(\gamma) \in A, \\
0 & \text { otherwise },
\end{array} \quad f \in \ell^{2}(\Gamma)\right.
$$

(1) Show that E is an abstract spectral measure in $\ell^{2}(\Gamma)$ defined on the σ-algebra of all subsets of \mathbb{C}.
(2) Show that E is compactly supported if and only if φ is bounded.
(3) Describe the measures $E_{f, g}, f, g \in \ell^{2}(\Gamma)$.
(4) Let $\psi: \mathbb{C} \rightarrow \mathbb{C}$ be any function. Show that $\int \psi \mathrm{d} E=M_{\psi \circ \varphi}$ (using the notation from Problem 17 to Chapter XII).

Problem 6. Let (Ω, Σ, μ) be a complete measure space with μ semifinite and let φ : $\Omega \rightarrow \mathbb{C}$ be a Σ-measurable function. Set $\mathcal{A}=\left\{A \subset \mathbb{C} ; \varphi^{-1}(A) \in \Sigma\right\}$. For $A \in \mathcal{A}$ let $E(A)=M_{\chi_{\varphi^{-1}(A)}}$ (using the notation from Problem 17 to Chapter XII).
(1) Show that E is an abstract spectral measure in $L^{2}(\mu)$ defined on the σ-algebra \mathcal{A}.
(2) Show that E is compactly supported if and only if φ is essentially bounded.
(3) Describe the measures $E_{f, g}, f, g \in L^{2}(\mu)$.
(4) Let $\psi: \mathbb{C} \rightarrow \mathbb{C}$ be any \mathcal{A}-measurable function. Show that $\int \psi \mathrm{d} E=M_{\psi \circ \varphi}$.

Problem 7. (1) Show that the inclusion in Theorem XIII.12(a) may be strict.
(2) Show that the inclusion in Theorem XIII.12(b) may be strict.

Hint: (1) Take f unbounded and $g=-f$. (2) Take g to be strictly positive and unbounded and $f=\frac{1}{g}$.

Problem 8. Let T be a nonzero compact normal operator on a Hilbert space. Show that T may be expressed in the form

$$
T x=\sum_{n=1}^{N} \lambda_{n}\left\langle x, x_{n}\right\rangle x_{n}, \quad x \in H,
$$

where $N \in \mathbb{N}$ or $N=+\infty,\left(x_{n}\right)_{n=1}^{N}$ is an orthonormal system and λ_{n} are nonzero complex numbers satisfying $\lambda_{n} \rightarrow 0$ if $N=+\infty$. (I.e., an analogue of the Hilbert Schmidt theorem - Theorem III. 38 from Introduction to functional analysis - holds, just the coefficients λ_{n} need not be real.)

Hint: Proceed similarly as in the selfadjoint case - use the description of the spectrum of a compact operator (Theorem III.35) and the fact that eigenvectors associated to different eigenvalues are orthogonal (Proposition XII.4(d)).

Problem 9. Let H be an infinite-dimensional Hilbert space and let T be a nonzero compact normal operator on H. Consider the formula for T provided by Problem 8.
(1) Show that $\sigma(T)=\{0\} \cup\left\{\lambda_{n} ; n \in \mathbb{N}, n \leq N\right\}$.
(2) Let $f: \sigma(T) \rightarrow \mathbb{C}$ be a bounded function. Show that f is always Borel measurable and it is continuous if and only if $f\left(\lambda_{n}\right) \rightarrow 0$.
(3) Let $f: \sigma(T) \rightarrow \mathbb{C}$ be a continuous function satisfying $f(0)=0$. Show that $\widetilde{f}(T)$ is also a compact operator and that

$$
\widetilde{f}(T) x=\sum_{n=1}^{N} f\left(\lambda_{n}\right)\left\langle x, x_{n}\right\rangle x_{n}, \quad x \in H .
$$

(4) Let $f: \underset{\sim}{\sigma}(T) \rightarrow \mathbb{C}$ be a continuous function satisfying $f(0) \neq 0$. Show that $f(0) I-\widetilde{f}(T)$ is a compact operator (and hence $\widetilde{f}(T)$ is not compact) and that

$$
\begin{aligned}
\widetilde{f}(T) x & =f(0) P x+\sum_{n=1}^{N} f\left(\lambda_{n}\right)\left\langle x, x_{n}\right\rangle x_{n} \\
& =f(0) x+\sum_{n=1}^{N}\left(f\left(\lambda_{n}\right)-f(0)\right)\left\langle x, x_{n}\right\rangle x_{n}, \quad x \in H,
\end{aligned}
$$

where P is the orthogonal projection onto $\operatorname{Ker} T$.
Hint: (3),(4): Use Theorems XI. 14 and XI.15, in particular their 'moreover parts'.
Problem 10. Let H and T be as in Problem 9.
(1) Let E be the spectral measure of T. Show that E is defined on the σ-algebra of all subsets of \mathbb{C} and that, given $A \subset \mathbb{C}, E(A)$ is the orthogonal projection onto

$$
\overline{\operatorname{span} \bigcup\left\{\operatorname{Ker}\left(\lambda_{n} I-T\right) ; \lambda_{n} \in A\right\}}
$$

if $0 \notin A$ and the orthogonal projection onto

$$
\operatorname{Ker} T \oplus \overline{\operatorname{span} \bigcup\left\{\operatorname{Ker}\left(\lambda_{n} I-T\right) ; \lambda_{n} \in A\right\}}
$$

if $0 \in A$.
(2) Let $f: \sigma(T) \rightarrow \mathbb{C}$ be a bounded function. Show that $\widetilde{f}(T)$ may be expressed by the formula from Problem 9(4).
(3) Characterize bounded functions f for which $\widetilde{f}(T)$ is a compact operator.
(4) Let $f: \sigma(T) \rightarrow \mathbb{C}$ be an unbounded function. Describe the operator $\int f \mathrm{~d} E$ (i.e., find its domain and a formula).

Problems to Section XIII. 4 - unbounded normal operators

Problem 11. Consider the operators $T=M_{z}$ from Problem 15 to Chapter XII on ℓ^{2} or $T=M_{g}$ from Problem 17 to Chapter XII on $L^{2}(\mu)$.
(1) Show that these operators are normal.
(2) Compute the operators B and C from Lemma XIII.19.
(3) Compute the projections P_{j} from Theorem XIII.21.

Problem 12. Let E be an abstract spectral measure in a Hilbert space H defined on a σ-algebra \mathcal{A}. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an \mathcal{A}-measurable function and $T=\int f \mathrm{~d} E$.
(1) Show that the operator T is normal.
(2) Compute the operators B and C from Lemma XIII.19.
(3) Compute the projections P_{j} from Theorem XIII.21.

Problem 13. Let $k \in \mathbb{Z}$ and let $\boldsymbol{z}=\left(z_{n}\right)_{n \in \mathbb{Z}}$ be a fixed sequence of complex numbers. Define an operator T on $\ell^{2}(\mathbb{Z})$ by the formula
$T\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right)=\left(z_{n+k} x_{n+k}\right)_{n \in \mathbb{Z}}, \quad\left(x_{n}\right) \in D(T)=\left\{\left(y_{n}\right) \in \ell^{2}(\mathbb{Z}) ;\left(z_{n+k} y_{n+k}\right) \in \ell^{2}(\mathbb{Z})\right.$.
(1) Show that T is a closed densely defined operator.
(2) Compute T^{*}.
(3) Compute $T^{*} T$ and $T T^{*}$.
(4) Under which conditions is T normal? Under which conditions is T self-adjoint?
(5) Compute the operators B and C from Lemma XIII.19.

Problem 14. Let $r \in \mathbb{R}$ and let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be a fixed measurable function. Define an operator T on $L^{2}(\mathbb{R})$ by the formula

$$
T(f)(t)=\psi(t+r) \cdot f(t+r), \quad t \in \mathbb{R}, f \in L^{2}(\mathbb{R})
$$

(1) Show that T is a closed densely defined operator.
(2) Compute T^{*}.
(3) Compute $T^{*} T$ and $T T^{*}$.
(4) Under which conditions is T normal? Under which conditions is T self-adjoint?
(5) Compute the operators B and C from Lemma VI.19.

Problems to Section XIII. 5 - diagonalization of operators

Problem 15. Let H, K be two Hilbert spaces and let $U: H \rightarrow K$ be a unitary operator (i.e., an onto isometry). Let T be an operator on H. Set $S=U T U^{-1}$. Show that operator T and S have same properties. In particular:
(1) S is closed or densely defined if and only if T has the respective property.
(2) $\sigma(S)=\sigma(T)$ and S, T have the same eigenvalues.
(3) $S^{*}=U T^{*} U^{-1}$.
(4) S is selfadjoint (symmetric, maximal symmetric, normal) if and only if T has the respective property.
(5) Suppose that T is normal. Let E_{T} be the spectral measure of T, let \mathcal{A}_{T} be its domain σ-algebra. Similary, let E_{S} be the spectral measure of S and \mathcal{A}_{S} be its domain σ-algebra. Then $\mathcal{A}_{S}=\mathcal{A}_{T}$ and $E_{S}(A)=U E_{T}(A) U^{-1}$ for $A \in \mathcal{A}_{T}$.

Problem 16. Let $U: L^{2}((0,2 \pi)) \rightarrow \ell^{2}(\mathbb{Z})$ be the isometry known from the theory of Fourier series, i.e.,

$$
U(f)(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i n t} \mathrm{~d} t, \quad n \in \mathbb{Z}, f \in L^{2}((0,2 \pi)) .
$$

Consider the operator $T_{j}, j=1, \ldots, 6$, on $L^{2}((0,2 \pi))$ defined analogously as the operators from Problem 22 to Chapter XII.
(1) Compute the operators $U T_{j} U^{-1}$ for $j=1, \ldots, 6$.
(2) Compute the spectral measure of the operator T_{5}.

Hint: (1) Use integration by parts. Moreover, for $f \in D\left(T_{1}\right)$ show that $f(0)-f(2 \pi)=$ $\lim _{n \rightarrow \pm \infty} 2 \pi \operatorname{in} \hat{f}(n)$ and that $\frac{1}{2}(f(0)+f(2 \pi))=\sum_{n \in \mathbb{Z}} \hat{f}(n)$ (by $\hat{f}(n)$ we denote the Fourier coefficients; to prove the second equality use the Jordan-Dirichlet criterion).

Problem 17. Let $\mathcal{P}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be the Plancherel transform, i.e., the extension to $L^{2}(\mathbb{R})$ of the Fourier transform restricted to $L^{1}(\mathbb{R}) \cap L^{2}(R)$. It can be expressed by the formula

$$
\left.\mathcal{P}(f)=\lim _{r \rightarrow \infty}\left(t \mapsto \frac{1}{2 \pi} \int_{-r}^{r} f(x) e^{-i t x} \mathrm{~d} x\right) \quad \text { (the limit taken in } L^{2}(\mathbb{R})\right) .
$$

Consider the operator T_{1} from Problem 24 to Chapter XII on $L^{2}(\mathbb{R})$.
(1) Compute the operators $\mathcal{P} T_{1} \mathcal{P}^{-1}$.
(2) Compute the spectral measure of the operator T_{1}.

