Basic notation

- \mathbb{R} ... the set of real numbers
- $\bullet \ \mathbb{C} \ \ldots \ \text{the set of complex numbers}$
- $\overline{\mathbb{C}}$... the extended complex plane, i.e. $\mathbb{C} \cup \{\infty\}$
- H(G) ... the algebra of functions holomorphic (=analytic) on G, where $G \subset \overline{\mathbb{C}}$ is a nonempty open subset.
- U(a,r) $(a \in \mathbb{C}, r > 0) \dots$ the open disc with center a and radius r
- P(a,r) $(a \in \mathbb{C}, r > 0) \dots$ the reduced neighborhood $U(a,r) \setminus \{a\}$
- P(a, r, R) $(a \in \mathbb{C}, 0 \le r < R \le +\infty)$... the annulus $\{z \in \mathbb{C} : r < |z - a| < R\}$
- $\operatorname{ind}_{\gamma} a \ldots$ the index of the point *a* with respect to the closed path γ (= the winding number of γ around *a*)
- $\operatorname{res}_a f \ldots$ the residue of the function f at the point a

I.1 Harmonic functions on \mathbb{R}^2 and their connections to holomorphic ones

Definition. Let $G \subset \mathbb{R}^2$ be an open set. A function $f: G \to \mathbb{R}$ is said to be harmonic, if it is continuous on G and satisfies on G the equality

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

Remark. Complex-valued harmonic functions are defined similarly. Then obviously, a complex function f is harmonic if and only if both Re f and Im f are harmonic.

Proposition 1. Let $G \subset \mathbb{C}$ be an open set.

(i) If $f \in H(G)$, then functions f_1, f_2 defined by the formulas

$$f_1(x,y) = \operatorname{Re} f(x+iy), \qquad f_2(x,y) = \operatorname{Im} f(x+iy)$$

are harmonic on G (if we identify \mathbb{C} and \mathbb{R}^2).

- (ii) Let $f: G \to \mathbb{R}$ be a harmonic function (if we identify \mathbb{C} and \mathbb{R}^2). If moreover $f \in C^2(G)$, then the following assertions hold:
 - The function

$$g(x+iy) = \frac{\partial f}{\partial x}(x,y) - i\frac{\partial f}{\partial y}(x,y)$$

is holomorphic on G.

• If G is simply connected, then there is $\tilde{f} \in H(G)$ such that $\operatorname{Re} \tilde{f}(x+iy) = f(x,y)$ on G.

Corollary. Let $G \subset \mathbb{C}$ be an open set and f be a holomorphic function on G, which does not attain zero on G. Then the function $g(x, y) = \ln |f(x+iy)|$ is harmonic on G (if we identify \mathbb{C} and \mathbb{R}^2).

Remark. It follows from Theorem 6 below that harmonic functions are automatically C^{∞} .

Definition. By the **Poisson kernel** we understand the function defined by the formula

$$P_r(t) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{int}, \qquad t \in \mathbb{R}, r \in [0,1).$$

Proposition 2 (properties of the Poisson kernel).

- (i) $P_r(\theta t) = \operatorname{Re} \frac{e^{it} + re^{i\theta}}{e^{it} re^{i\theta}} = \frac{1 r^2}{1 2r\cos(\theta t) + r^2}$ for $r \in [0, 1), t, \theta \in \mathbb{R}$.
- (ii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) dt = 1$ for $r \in [0, 1)$.
- (iii) P_r is a strictly positive even 2π -periodic function for each $r \in [0, 1)$. For r > 0 the function P_r is strictly decreasing on $[0, \pi]$.
- (iv) $\lim_{r \to 1^-} P_r(t) = 0$ unless t is a multiple of 2π .

Remark. By \mathbb{T} we denote the unit circle, i.e., $\{e^{it}, t \in \mathbb{R}\}$. Functions on \mathbb{T} are canonically identified with 2π -peridodic functions on \mathbb{R} , measures on \mathbb{T} are identified with measures on $[-\pi, \pi)$ (sometimes on $[\alpha, \alpha + 2\pi)$ for some $\alpha \in \mathbb{R}$). On \mathbb{T} we consider the normalized Lebesgue measure. The spaces $L^p(\mathbb{T})$ are considered with respect to this measure.

Definition.

• Let $f \in L^1(\mathbb{T})$. By the **Poisson integral** of the function f we mean the function P[f] defined on U(0, 1) by the formula

$$P[f](re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(t) \,\mathrm{d}t, \qquad r \in [0, 1), \theta \in \mathbb{R}.$$

• Let μ be a (signed or complex-valued) Borel measure on \mathbb{T} . By the **Poisson integral** of the measure μ we mean the function $P[d\mu]$ defined on U(0, 1) by the formula

$$P[d\mu](re^{i\theta}) = \int_{[-\pi,\pi)} P_r(\theta - t) d\mu(t), \qquad r \in [0,1), \theta \in \mathbb{R}.$$

Proposition 3. $P[d\mu]$ is a harmonic function on U(0,1) for any complex Borel measure μ on \mathbb{T} . In particular, P[f] is a harmonic function on U(0,1)for any $f \in L^1(\mathbb{T})$.

Further, if μ is a real-valued measure, the function $P[d\mu]$ is real-valued as well. If μ is non-negative, the function $P[d\mu]$ is non-negative as well. Similarly for f and P[f].

Proposition 4 (a version of the residue theorem). Let $a \in \mathbb{C}$, R > 0 and $M \subset U(a, R)$ be a finite set. Let f be a complex function continuous on $\overline{U(a, R)} \setminus M$ and holomorphic on $U(a, R) \setminus M$. If φ is the positively oriented circle with center a and radius R, then

$$\int_{\varphi} f = 2\pi i \sum_{a \in M} \operatorname{res}_a f.$$

Corollary (Poisson integral of a holomorphic function). Let $a \in \mathbb{C}$, R > 0 and f be a complex function continuous on $\overline{U(a, R)}$ and holomorphic on U(a, R). Then for each $r \in [0, R)$ and $\theta \in \mathbb{R}$ the following formulas hold:

• $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + Re^{it}) \cdot \frac{Re^{it} + re^{i\theta}}{Re^{it} - re^{i\theta}} dt = 2f(a + re^{i\theta}) - f(a);$

•
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + Re^{it}) \cdot \frac{Re^{-it} + re^{-i\theta}}{Re^{-it} - re^{-i\theta}} dt = f(a);$$

• $f(a+re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a+Re^{it}) \cdot \operatorname{Re} \frac{Re^{it}+re^{i\theta}}{Re^{it}-re^{i\theta}} dt.$

Theorem 5 (solution of the Dirichlet problem on the disc). Let f be a function continuous on \mathbb{T} . Let us define a function Hf by the formula

$$Hf(re^{i\theta}) = \begin{cases} f(e^{i\theta}), & r = 1, \theta \in \mathbb{R}, \\ P[f](re^{i\theta}), & r \in [0,1), \theta \in \mathbb{R} \end{cases}$$

Then the function Hf is continuous on $\overline{U(0,1)}$ (and also harmonic on U(0,1) and equal to f on \mathbb{T}).

Theorem 6 (expressing a harmonic function by the Poisson integral). Let f be a complex function continuous on $\overline{U(0,1)}$ and harmonic on U(0,1). Then $f = P[f|_{\mathbb{T}}]$ on U(0,1).

Corollary.

• If f is a complex function continuous on $\overline{U(a,R)}$ and harmonic on U(a,R), then for $r \in [0,R)$ and $\theta \in \mathbb{R}$ the following formula holds:

$$f(a + re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - t) + r^2} f(a + Re^{it}) dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + Re^{it}) \cdot \operatorname{Re} \frac{Re^{it} + re^{i\theta}}{Re^{it} - re^{i\theta}} dt.$$

- A real-valued harmonic function on U(a, R) is the real part of a holomorphic function on U(a, R).
- Harmonic functions are C^{∞} .
- Let f be a function continuous on $\overline{U(a,R)}$ and harmonic on U(a,R). Then $f(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + Re^{it}) dt$.

Theorem 7 (Harnack). Let $G \subset \mathbb{R}^2$ be a domain and let (f_n) be a sequence of harmonic functions on G.

- (i) It the sequence (f_n) is locally uniformly convergent on G, the limit function is harmonic on G.
- (ii) Suppose that the functions f_n are real-valued and the sequence $(f_n(z))$ is non-decreasing for each $z \in G$. Then either the sequence (f_n) is locally uniformly convergent on G or $f_n(z) \to +\infty$ for each $z \in G$.

Definition. Let $G \subset \mathbb{R}^2$ be an open set and let f be a continuous function on G. We say that f enjoys the **mean value property**, if for any $a \in G$ there is a sequence $r_n \searrow 0$ such that for any $n \in \mathbb{N}$ the following formula holds:

$$f(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + r_n e^{it}) \,\mathrm{d}t$$

Věta 8. Let $G \subset \mathbb{R}^2$ be an open set and let f be a continuous function on G. If f enjoys the mean value property, then f is harmonic on G.

Theorem 9 (Schwarz reflection principle). Let $\Omega \subset \mathbb{C}$ be a domain, which is symmetric with respect to reflection through the real axis. Denote by Ω^+ the intersection of Ω with the half-plane $\{z : \text{Im } z > 0\}$ and Ω^- the intersection with the half-plane $\{z : \text{Im } z < 0\}$. Let f be a holomorphic function on Ω^+ such that for each $x \in \Omega \cap \mathbb{R}$ we have

$$\lim_{z \to x, z \in \Omega^+} \operatorname{Im} f(z) = 0.$$

Then there is $F \in H(\Omega)$ such that F = f na Ω^+ . Moreover, this F satisfies $F(\overline{z}) = \overline{F(z)}$ for $z \in \Omega$.