Basic notation

- \mathbb{R}... the set of real numbers
- $\mathbb{C} \ldots$ the set of complex numbers
- $\overline{\mathbb{C}} \ldots$ the extended complex plane, i.e. $\mathbb{C} \cup\{\infty\}$
- $H(G) \ldots$ the algebra of functions holomorphic (=analytic) on G, where $G \subset \overline{\mathbb{C}}$ is a nonempty open subset.
- $U(a, r)(a \in \mathbb{C}, r>0) \ldots$ the open disc with center a and radius r
- $P(a, r)(a \in \mathbb{C}, r>0) \ldots$ the reduced neighborhood $U(a, r) \backslash\{a\}$
- $P(a, r, R)(a \in \mathbb{C}, 0 \leq r<R \leq+\infty)$
\ldots the annulus $\{z \in \mathbb{C}: r<|z-a|<R\}$
- $\operatorname{ind}_{\gamma} a \ldots$ the index of the point a with respect to the closed path γ ($=$ the winding number of γ around a)
- $\operatorname{res}_{a} f \ldots$ the residue of the function f at the point a

I. 1 Harmonic functions on \mathbb{R}^{2} and their connections to holomorphic ones

Definition. Let $G \subset \mathbb{R}^{2}$ be an open set. A function $f: G \rightarrow \mathbb{R}$ is said to be harmonic, if it is continuous on G and satisfies on G the equality

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Remark. Complex-valued harmonic functions are defined similarly. Then obviously, a complex function f is harmonic if and only if both $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic.
Proposition 1. Let $G \subset \mathbb{C}$ be an open set.
(i) If $f \in H(G)$, then functions f_{1}, f_{2} defined by the formulas

$$
f_{1}(x, y)=\operatorname{Re} f(x+i y), \quad f_{2}(x, y)=\operatorname{Im} f(x+i y)
$$

are harmonic on G (if we identify \mathbb{C} and \mathbb{R}^{2}).
(ii) Let $f: G \rightarrow \mathbb{R}$ be a harmonic function (if we identify \mathbb{C} and \mathbb{R}^{2}). If moreover $f \in C^{2}(G)$, then the following assertions hold:

- The function

$$
g(x+i y)=\frac{\partial f}{\partial x}(x, y)-i \frac{\partial f}{\partial y}(x, y)
$$

is holomorphic on G.

- If G is simply connected, then there is $\tilde{f} \in H(G)$ such that $\operatorname{Re} \tilde{f}(x+i y)=f(x, y)$ on G.

Corollary. Let $G \subset \mathbb{C}$ be an open set and f be a holomorphic function on G, which does not attain zero on G. Then the function $g(x, y)=\ln |f(x+i y)|$ is harmonic on G (if we identify \mathbb{C} and \mathbb{R}^{2}).
Remark. It follows from Theorem 6 below that harmonic functions are automatically C^{∞}.

Definition. By the Poisson kernel we understand the function defined by the formula

$$
P_{r}(t)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n t}, \quad t \in \mathbb{R}, r \in[0,1)
$$

Proposition 2 (properties of the Poisson kernel).
(i) $P_{r}(\theta-t)=\operatorname{Re} \frac{e^{i t}+r e^{i \theta}}{e^{i t}-r e^{i \theta}}=\frac{1-r^{2}}{1-2 r \cos (\theta-t)+r^{2}}$ for $r \in[0,1), t, \theta \in \mathbb{R}$.
(ii) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(t) \mathrm{d} t=1$ for $r \in[0,1)$.
(iii) P_{r} is a strictly positive even 2π-periodic function for each $r \in[0,1)$. For $r>0$ the function P_{r} is strictly decreasing on $[0, \pi]$.
(iv) $\lim _{r \rightarrow 1-} P_{r}(t)=0$ unless t is a multiple of 2π.

Remark. By \mathbb{T} we denote the unit circle, i.e., $\left\{e^{i t}, t \in \mathbb{R}\right\}$. Functions on \mathbb{T} are canonically identified with 2π-peridodic functions on \mathbb{R}, measures on \mathbb{T} are identified with measures on $[-\pi, \pi)$ (sometimes on $[\alpha, \alpha+2 \pi)$ for some $\alpha \in \mathbb{R}$). On \mathbb{T} we consider the normalized Lebesgue measure. The spaces $L^{p}(\mathbb{T})$ are considered with respect to this measure.

Definition.

- Let $f \in L^{1}(\mathbb{T})$. By the Poisson integral of the function f we mean the function $P[f]$ defined on $U(0,1)$ by the formula

$$
P[f]\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(\theta-t) f(t) \mathrm{d} t, \quad r \in[0,1), \theta \in \mathbb{R} .
$$

- Let μ be a (signed or complex-valued) Borel measure on \mathbb{T}. By the Poisson integral of the measure μ we mean the function $P[\mathrm{~d} \mu]$ defined on $U(0,1)$ by the formula

$$
P[\mathrm{~d} \mu]\left(r e^{i \theta}\right)=\int_{[-\pi, \pi)} P_{r}(\theta-t) \mathrm{d} \mu(t), \quad r \in[0,1), \theta \in \mathbb{R}
$$

Proposition 3. $\quad P[\mathrm{~d} \mu]$ is a harmonic function on $U(0,1)$ for any complex Borel measure μ on \mathbb{T}. In particular, $P[f]$ is a harmonic function on $U(0,1)$ for any $f \in L^{1}(\mathbb{T})$.

Further, if μ is a real-valued measure, the function $P[\mathrm{~d} \mu]$ is real-valued as well. If μ is non-negative, the function $P[\mathrm{~d} \mu]$ is non-negative as well. Similarly for f and $P[f]$.

Proposition 4 (a version of the residue theorem). Let $a \in \mathbb{C}, R>0$ and $\underline{M \subset U}(a, R)$ be a finite set. Let f be a complex function continuous on $\overline{U(a, R)} \backslash M$ and holomorphic on $U(a, R) \backslash M$. If φ is the positively oriented circle with center a and radius R, then

$$
\int_{\varphi} f=2 \pi i \sum_{a \in M} \operatorname{res}_{a} f
$$

Corollary (Poisson integral of a holomorphic function). Let $a \in \mathbb{C}, R>$ 0 and f be a complex function continuous on $\overline{U(a, R)}$ and holomorphic on $U(a, R)$. Then for each $r \in[0, R)$ and $\theta \in \mathbb{R}$ the following formulas hold:

- $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+R e^{i t}\right) \cdot \frac{R e^{i t}+r e^{i \theta}}{R e^{i t}-r e^{i \theta}} \mathrm{~d} t=2 f\left(a+r e^{i \theta}\right)-f(a)$;
- $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+R e^{i t}\right) \cdot \frac{R e^{-i t}+r e^{-i \theta}}{R e^{-i t}-r e^{-i \theta}} \mathrm{~d} t=f(a)$;
- $f\left(a+r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+R e^{i t}\right) \cdot \operatorname{Re} \frac{R e^{i t}+r e^{i \theta}}{R e^{i t}-r e^{i \theta}} \mathrm{~d} t$.

Theorem 5 (solution of the Dirichlet problem on the disc). Let f be a function continuous on \mathbb{T}. Let us define a function $H f$ by the formula

$$
H f\left(r e^{i \theta}\right)= \begin{cases}f\left(e^{i \theta}\right), & r=1, \theta \in \mathbb{R} \\ P[f]\left(r e^{i \theta}\right), & r \in[0,1), \theta \in \mathbb{R}\end{cases}
$$

Then the function $H f$ is continuous on $\overline{U(0,1)}$ (and also harmonic on $U(0,1)$ and equal to f on \mathbb{T}).

Theorem 6 (expressing a harmonic function by the Poisson integral). Let f be a complex function continuous on $\overline{U(0,1)}$ and harmonic on $U(0,1)$. Then $f=P\left[\left.f\right|_{\mathbb{T}}\right]$ on $U(0,1)$.

Corollary.

- If f is a complex function continuous on $\overline{U(a, R)}$ and harmonic on $U(a, R)$, then for $r \in[0, R)$ and $\theta \in \mathbb{R}$ the following formula holds:

$$
\begin{aligned}
f\left(a+r e^{i \theta}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-t)+r^{2}} f\left(a+R e^{i t}\right) \mathrm{d} t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+R e^{i t}\right) \cdot \operatorname{Re} \frac{R e^{i t}+r e^{i \theta}}{R e^{i t}-r e^{i \theta}} \mathrm{~d} t
\end{aligned}
$$

- A real-valued harmonic function on $U(a, R)$ is the real part of a holomorphic function on $U(a, R)$.
- Harmonic functions are C^{∞}.
- Let f be a function continuous on $\overline{U(a, R)}$ and harmonic on $U(a, R)$. Then $f(a)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+R e^{i t}\right) \mathrm{d} t$.

Theorem 7 (Harnack). Let $G \subset \mathbb{R}^{2}$ be a domain and let $\left(f_{n}\right)$ be a sequence of harmonic functions on G.
(i) It the sequence $\left(f_{n}\right)$ is locally uniformly convergent on G, the limit function is harmonic on G.
(ii) Suppose that the functions f_{n} are real-valued and the sequence $\left(f_{n}(z)\right)$ is non-decreasing for each $z \in G$. Then either the sequence $\left(f_{n}\right)$ is locally uniformly convergent on G or $f_{n}(z) \rightarrow+\infty$ for each $z \in G$.

Definition. Let $G \subset \mathbb{R}^{2}$ be an open set and let f be a continuous function on G. We say that f enjoys the mean value property, if for any $a \in G$ there is a sequence $r_{n} \searrow 0$ such that for any $n \in \mathbb{N}$ the following formula holds:

$$
f(a)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+r_{n} e^{i t}\right) \mathrm{d} t
$$

Věta 8. Let $G \subset \mathbb{R}^{2}$ be an open set and let f be a continuous function on G. If f enjoys the mean value property, then f is harmonic on G.
Theorem 9 (Schwarz reflection principle). Let $\Omega \subset \mathbb{C}$ be a domain, which is symmetric with respect to reflection through the real axis. Denote by Ω^{+} the intersection of Ω with the half-plane $\{z: \operatorname{Im} z>0\}$ and Ω^{-}the intersection with the half-plane $\{z: \operatorname{Im} z<0\}$. Let f be a holomorphic function on Ω^{+} such that for each $x \in \Omega \cap \mathbb{R}$ we have

$$
\lim _{z \rightarrow x, z \in \Omega^{+}} \operatorname{Im} f(z)=0
$$

Then there is $F \in H(\Omega)$ such that $F=f$ na Ω^{+}. Moreover, this F satisfies $F(\bar{z})=\overline{F(z)}$ for $z \in \Omega$.

