I.2 Boundary behavior of holomorphic functions

Theorem 10 (on boundary behaviour of harmonic functions).

- (1) Let f be a bounded harmonic function on U(0,1). Then there is a unique $f^* \in L^{\infty}(\mathbb{T})$ such that $P[f^*] = f$.
- (2) Let $g \in L^1(\mathbb{T})$. Then $g(t) = \lim_{r \to 1^-} P[g](re^{it})$ for almost all $t \in [0, 2\pi)$ (with respect to the Lesgue measure).

Corollary (Fatou theorem). Let f be a bounded holomorphic function on U(0,1). Then the limit $f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it})$ exists for almost all $t \in [0, 2\pi)$. Moreover, $f^* \in L^{\infty}(\mathbb{T})$, $||f^*||_{\infty} = \sup\{|f(z)| : z \in U(0,1)\}$ and for each $z \in U(0,1)$ we have

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f^*(e^{it})}{e^{it} - z} e^{it} \, \mathrm{d}t.$$

Corollary. Let f be a bounded holomorphic function on U(0,1) and f^* be the function provided by the Fatou theorem. If $f^* = 0$ almost everywhere on some arc, then f = 0 on U(0,1).

Lemma 11. Let $G \subset \mathbb{C}$ be a bounded simply connected domain, let f be a conformal mapping of G onto U(0,1). Let $\varphi : [0,1] \to \mathbb{C}$ be a continuous curve satisfying $\varphi([0,1)) \subset G$ and $\varphi(1) \in \partial G$. Then the limit $\lim_{t\to 1^-} f(\varphi(t))$ exists and its value belongs to the unit circle.

Definition. Let $G \subset \mathbb{C}$ be an open set and $w \in \partial G$. We say that

- (i) the point w is **accessible**, if there exists a continuous curve φ : $[0,1] \to \mathbb{C}$ such that $\varphi([0,1)) \subset G$ and $\varphi(1) = w$;
- (ii) the point w is **simple**, if for any sequence of points $z_n \in G$ such that $z_n \to w$ there exists a continuous curve $\varphi : [0,1] \to \mathbb{C}$ satisfying $\varphi([0,1)) \subset G$ and $\varphi(1) = w$ and, moreover, there exists a strictly increasing sequence of points $t_n \in (0,1)$ such that $t_n \to 1$ and $\varphi(t_n) = z_n$ for each $n \in \mathbb{N}$.

Theorem 12. Let $G \subset \mathbb{C}$ be a bounded simply connected domain, let f be a conformal mapping of G onto U(0, 1).

- (1) If $w \in \partial G$ is simple, the mapping f can be continuously extended on $G \cup \{w\}$. After extending we have |f(w)| = 1.
- (2) If $w_1, w_2 \in \partial G$ are two distinct simple point, the mapping f can be continuously extended on $G \cup \{w_1, w_2\}$. After extending we have $f(w_1) \neq f(w_2)$.

Corollary. Let $G \subset \mathbb{C}$ be a bounded simply connected domain such that any point $w \in \partial G$ is simple. Then any conformal mapping of G onto U(0,1) can be extended to a homeomorphism of \overline{G} onto $\overline{U(0,1)}$.