I.3 Hardy spaces on the unit disc

Definition. Let $\Omega \subset \mathbb{C}$ be an open set and $u: \Omega \to [-\infty, +\infty)$ be a function. The function u is said to be subharmonic, if it is upper semicontinuous and, moreover, whenever $a \in \Omega$ and R > 0 are such that $U(a, R) \subset \Omega$, it holds

$$u(a) \le \frac{1}{2\pi} \int_{-\pi}^{\pi} u(a + Re^{it}) \,\mathrm{d}t$$

and the integral on the right-hand side is not equal to $-\infty$.

Remark: Similarly one can define **superharmonic** functions (they are lower semicontinuous, have values in $(-\infty, +\infty]$, satisfy the opposite inequality and the respective integrals are not $+\infty$). Then a function is harmonic if and only if it is simultaneously subharmonic and superharmonic.

Theorem 13. Let $\Omega \subset \mathbb{C}$ be a domain and let f be a holomorphic function on Ω which is not the constant zero function. Then the functions $\log |f|$, $\log^+ |f| = |f|^p$ ($p \in (0, +\infty)$) are subharmonic on Ω .

Remark: In the above theorem we set $\log 0 = -\infty$ and $\log^+ t = (\log t)^+ = \max\{\log t, 0\}$ for $t \in [0,\infty).$

Theorem 14. Let $\Omega \subset \mathbb{C}$ be an open set and u be a subharmonic function on Ω . Let $a \in \Omega$ and R > 0 be such that $U(a, R) \subset \Omega$. Let h be a function continuous on U(a, R) and harmonic on U(a, R). If $u \leq h$ on the circle |z - a| = R, then $u \leq h$ on U(a, R).

Notation:

• $\mathbb{D} = U(0,1) = \{z \in \mathbb{C} : |z| < 1\}$

For $f \in H(\mathbb{D})$ and $r \in [0, 1)$ set:

•
$$M_0(f,r) = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log^+ \left|f(re^{i\theta})\right| \,\mathrm{d}\theta\right)$$

• $M_p(f,r) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left|f(re^{i\theta})\right|^p \,\mathrm{d}\theta\right)^{1/p} \,(0
• $M_\infty(f,r) = \sup_{\theta \in [-\pi,\pi)} \left|f(re^{i\theta})\right|$$

Let $f \in H(\mathbb{D})$. Theorem 15.

- The function $r \mapsto M_p(f, r)$ is non-decreasing on [0, 1) for any $p \in [0, \infty]$.
- The function $p \mapsto M_p(f, r)$ is non-decreasing on $(0, \infty]$ for any $r \in (0, 1)$.
- $M_0(f,r)^p \le 1 + M_p(f,r)^p$ for any $p \in (0,\infty)$ and $r \in (0,1)$.

Definition.

• For $f \in H(\mathbb{D})$ and $p \in [0, \infty]$ set

$$||f||_p = \sup_{r \in [0,1)} M_p(f,r) = \lim_{r \to 1-} M_p(f,r).$$

• For $p \in (0, \infty]$ set

$$H^p = \{ f \in H(\mathbb{D}) : \|f\|_p < \infty \}.$$

• Furher, set

$$N = \{ f \in H(\mathbb{D}) : \|f\|_0 < \infty \}.$$

Remark. $H^p \subset H^s \subset N$ whenever $0 < s < p \leq \infty$.

Let $f \in N$. Then there are $g, h \in H(\mathbb{D})$ such that $||g||_{\infty} \leq 1$, h has no roots in Lemma 16. $\mathbb{D}, h \in N \text{ and } \|h\|_p = \|f\|_p \text{ for each } p \in [0, \infty].$

Let $f \in H^p$. Lemma 17.

- If $p \ge 1$, then $M_{\infty}(f,r) \le \frac{1}{1-r} \|f\|_1 \le \frac{1}{1-r} \|f\|_p$ for $r \in (0,1)$. If $p \in (0,1)$, then $M_{\infty}(f,r) \le \frac{3}{(1-r)^{1+\frac{1}{p}}} \|f\|_p$ for $r \in (0,1)$.

Theorem 18.

- $(H^p, \|\cdot\|_p)$ is a Banach space for any $p \in [1, \infty]$.
- If p ∈ (0,1), then H^p is a complete metric linear space with the metric defined by the formula ρ_p(f,g) = ||f − g||^p_p.

Theorem 19. Let $f \in H(\mathbb{D})$ satisfy

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \qquad z \in \mathbb{D}.$$

Then

$$||f||_2^2 = \sum_{n=0}^{\infty} |a_n|^2.$$

If moreover $f \in H^2$, then the following assertions hold:

- (1) The limit $f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it})$ exists for almost all $t \in [0, 2\pi)$.
- (2) $f^* \in L^2(\mathbb{T})$
- (3) For $n \in \mathbb{Z}$ define $\varphi_n(e^{it}) = e^{int}$, $t \in [-\pi, \pi)$. Then $(\varphi_n)_{n \in \mathbb{Z}}$ is an orthonormal basis of $L^2(\mathbb{T})$ and the expansion of f^* with respect to this basis is

$$f^* = \sum_{n=0}^{\infty} a_n \varphi_n.$$

- (4) $\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f^*(e^{it}) f(re^{it}) \right|^2 \, \mathrm{d}t = 0.$ (5) $f = P[f^*]$
- (6) Let γ be the positively oriented unit circle. Then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(w)}{w - z} \, \mathrm{d}w, \qquad z \in \mathbb{D}.$$

Corollary. H^2 is a Hilbert space and the mapping $f \mapsto f^*$ is a linear isometry of H^2 onto the closed linear subspace of $L^2(\mathbb{T})$ generated by the functions φ_n , $n \ge 0$. (This subspace is formed by those $g \in L^2(\mathbb{T})$, whose coefficients at φ_n , n < 0, in the expansion with respect to the orthonormal basis φ_n , $n \in \mathbb{Z}$ vanish, i.e., by those g which satisfy $\hat{g}(n) = 0$ for n < 0.)

Theorem 20. Let $p \in [1, \infty]$ and $f \in H^p$. Then the limit $f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it})$ exists for almost all $t \in [0, 2\pi)$ and, moreover, the following assertions hold.

- (1) $f^* \in L^p(\mathbb{T})$
- (2) $||f^*||_p = ||f||_p$
- (3) $f = P[f^*]$
- (4) Let γ be the positively oriented unit circle. Then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(w)}{w-z} \,\mathrm{d}w, \qquad z \in \mathbb{D}.$$

(5) If $p < \infty$, then $\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f^*(e^{it}) - f(re^{it}) \right|^p dt = 0.$

Theorem 21. Let $f \in H(\mathbb{D})$ and $p \in [1, \infty]$. Then $f \in H^p$ if and only if there exists $g \in L^p(\mathbb{T})$ such that $\hat{g}(n) = 0$ for n < 0 and f = P[g].