
I.3 Hardy spaces on the unit disc

Definition. Let Ω ⊂ C be an open set and u : Ω → [−∞,+∞) be a function. The function
u is said to be subharmonic, if it is upper semicontinuous and, moreover, whenever a ∈ Ω and
R > 0 are such that U(a,R) ⊂ Ω, it holds

u(a) ≤
1

2π

∫ π

−π

u(a+Reit) dt

and the integral on the right-hand side is not equal to −∞.

Remark: Similarly one can define superharmonic functions (they are lower semicontinuous, have
values in (−∞,+∞], satisfy the opposite inequality and the respective integrals are not +∞).
Then a function is harmonic if and only if it is simultaneously subharmonic and superharmonic.

Theorem 13. Let Ω ⊂ C be a domain and let f be a holomorphic function on Ω which is
not the constant zero function. Then the functions log |f |, log+ |f | a |f |p (p ∈ (0,+∞)) are
subharmonic on Ω.

Remark: In the above theorem we set log 0 = −∞ and log+ t = (log t)+ = max{log t, 0} for
t ∈ [0,∞).

Theorem 14. Let Ω ⊂ C be an open set and u be a subharmonic function on Ω. Let a ∈ Ω
and R > 0 be such that U(a,R) ⊂ Ω. Let h be a function continuous on U(a,R) and harmonic
on U(a,R). If u ≤ h on the circle |z − a| = R, then u ≤ h on U(a,R).

Notation:

• D = U(0, 1) = {z ∈ C : |z| < 1}

For f ∈ H(D) and r ∈ [0, 1) set:

• M0(f, r) = exp

(

1

2π

∫ π

−π

log+
∣

∣f(reiθ)
∣

∣ dθ

)

• Mp(f, r) =

(

1

2π

∫ π

−π

∣

∣f(reiθ)
∣

∣

p
dθ

)1/p

(0 < p < ∞)

• M∞(f, r) = sup
θ∈[−π,π)

∣

∣f(reiθ)
∣

∣

Theorem 15. Let f ∈ H(D).

• The function r 7→ Mp(f, r) is non-decreasing on [0, 1) for any p ∈ [0,∞].
• The function p 7→ Mp(f, r) is non-decreasing on (0,∞] for any r ∈ (0, 1).
• M0(f, r)

p ≤ 1 +Mp(f, r)
p for any p ∈ (0,∞) and r ∈ (0, 1).

Definition.

• For f ∈ H(D) and p ∈ [0,∞] set

‖f‖p = sup
r∈[0,1)

Mp(f, r) = lim
r→1−

Mp(f, r).

• For p ∈ (0,∞] set
Hp = {f ∈ H(D) : ‖f‖p < ∞}.

• Furher, set
N = {f ∈ H(D) : ‖f‖0 < ∞}.

Remark. Hp ⊂ Hs ⊂ N whenever 0 < s < p ≤ ∞.

Lemma 16. Let f ∈ N . Then there are g, h ∈ H(D) such that ‖g‖∞ ≤ 1, h has no roots in
D, h ∈ N and ‖h‖p = ‖f‖p for each p ∈ [0,∞].

Lemma 17. Let f ∈ Hp.

• If p ≥ 1, then M∞(f, r) ≤
1
1−r

‖f‖1 ≤
1
1−r

‖f‖p for r ∈ (0, 1).

• If p ∈ (0, 1), then M∞(f, r) ≤
3

(1−r)
1+ 1

p

‖f‖p for r ∈ (0, 1).



Theorem 18.

• (Hp, ‖ · ‖p) is a Banach space for any p ∈ [1,∞].
• If p ∈ (0, 1), then Hp is a complete metric linear space with the metric defined by the
formula ρp(f, g) = ‖f − g‖pp.

Theorem 19. Let f ∈ H(D) satisfy

f(z) =
∞
∑

n=0

anz
n, z ∈ D.

Then

‖f‖22 =
∞
∑

n=0

|an|
2.

If moreover f ∈ H2, then the following assertions hold:

(1) The limit f∗(eit) = lim
r→1−

f(reit) exists for almost all t ∈ [0, 2π).

(2) f∗ ∈ L2(T)
(3) For n ∈ Z define ϕn(e

it) = eint, t ∈ [−π, π). Then (ϕn)n∈Z is an orthonormal basis of
L2(T) and the expansion of f∗ with respect to this basis is

f∗ =
∞
∑

n=0

anϕn.

(4) lim
r→1−

1
2π

∫ π

−π

∣

∣f∗(eit)− f(reit)
∣

∣

2
dt = 0.

(5) f = P [f∗]
(6) Let γ be the positively oriented unit circle. Then

f(z) =
1

2πi

∫

γ

f∗(w)

w − z
dw, z ∈ D.

Corollary. H2 is a Hilbert space and the mapping f 7→ f∗ is a linear isometry of H2 onto
the closed linear subspace of L2(T) generated by the functions ϕn, n ≥ 0. (This subspace is
formed by those g ∈ L2(T), whose coeficients at ϕn, n < 0, in the expansion with respect to
the orthonormal basis ϕn, n ∈ Z vanish, i.e., by those g which satisfy ĝ(n) = 0 for n < 0.)

Theorem 20. Let p ∈ [1,∞] and f ∈ Hp. Then the limit f∗(eit) = lim
r→1−

f(reit) exists for

almost all t ∈ [0, 2π) and, moreover, the following assertions hold.

(1) f∗ ∈ Lp(T)
(2) ‖f∗‖p = ‖f‖p
(3) f = P [f∗]
(4) Let γ be the positively oriented unit circle. Then

f(z) =
1

2πi

∫

γ

f∗(w)

w − z
dw, z ∈ D.

(5) If p < ∞, then lim
r→1−

1
2π

∫ π

−π

∣

∣f∗(eit)− f(reit)
∣

∣

p
dt = 0.

Theorem 21. Let f ∈ H(D) and p ∈ [1,∞]. Then f ∈ Hp if and only if there exists
g ∈ Lp(T) such that ĝ(n) = 0 for n < 0 and f = P [g].


