I. 3 Hardy spaces on the unit disc

Definition. Let $\Omega \subset \mathbb{C}$ be an open set and $u: \Omega \rightarrow[-\infty,+\infty)$ be a function. The function u is said to be subharmonic, if it is upper semicontinuous and, moreover, whenever $a \in \Omega$ and $R>0$ are such that $\overline{U(a, R)} \subset \Omega$, it holds

$$
u(a) \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(a+R e^{i t}\right) \mathrm{d} t
$$

and the integral on the right-hand side is not equal to $-\infty$.
Remark: Similarly one can define superharmonic functions (they are lower semicontinuous, have values in $(-\infty,+\infty]$, satisfy the opposite inequality and the respective integrals are not $+\infty$). Then a function is harmonic if and only if it is simultaneously subharmonic and superharmonic.
Theorem 13. Let $\Omega \subset \mathbb{C}$ be a domain and let f be a holomorphic function on Ω which is not the constant zero function. Then the functions $\log |f|, \log ^{+}|f|$ a $|f|^{p}(p \in(0,+\infty))$ are subharmonic on Ω.
Remark: In the above theorem we set $\log 0=-\infty$ and $\log ^{+} t=(\log t)^{+}=\max \{\log t, 0\}$ for $t \in[0, \infty)$.
Theorem 14. Let $\Omega \subset \mathbb{C}$ be an open set and u be a subharmonic function on Ω. Let $a \in \Omega$ and $R>0$ be such that $\overline{U(a, R)} \subset \Omega$. Let h be a function continuous on $\overline{U(a, R)}$ and harmonic on $U(a, R)$. If $u \leq h$ on the circle $|z-a|=R$, then $u \leq h$ on $U(a, R)$.

Notation:

- $\mathbb{D}=U(0,1)=\{z \in \mathbb{C}:|z|<1\}$

For $f \in H(\mathbb{D})$ and $r \in[0,1)$ set:

- $M_{0}(f, r)=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \mathrm{d} \theta\right)$
- $M_{p}(f, r)=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \mathrm{~d} \theta\right)^{1 / p}(0<p<\infty)$
- $M_{\infty}(f, r)=\sup _{\theta \in[-\pi, \pi)}\left|f\left(r e^{i \theta}\right)\right|$

Theorem 15. Let $f \in H(\mathbb{D})$.

- The function $r \mapsto M_{p}(f, r)$ is non-decreasing on $[0,1)$ for any $p \in[0, \infty]$.
- The function $p \mapsto M_{p}(f, r)$ is non-decreasing on $(0, \infty]$ for any $r \in(0,1)$.
- $M_{0}(f, r)^{p} \leq 1+M_{p}(f, r)^{p}$ for any $p \in(0, \infty)$ and $r \in(0,1)$.

Definition.

- For $f \in H(\mathbb{D})$ and $p \in[0, \infty]$ set

$$
\|f\|_{p}=\sup _{r \in[0,1)} M_{p}(f, r)=\lim _{r \rightarrow 1-} M_{p}(f, r)
$$

- For $p \in(0, \infty]$ set

$$
H^{p}=\left\{f \in H(\mathbb{D}):\|f\|_{p}<\infty\right\}
$$

- Furher, set

$$
N=\left\{f \in H(\mathbb{D}):\|f\|_{0}<\infty\right\}
$$

Remark. $H^{p} \subset H^{s} \subset N$ whenever $0<s<p \leq \infty$.
Lemma 16. Let $f \in N$. Then there are $g, h \in H(\mathbb{D})$ such that $\|g\|_{\infty} \leq 1, h$ has no roots in $\mathbb{D}, h \in N$ and $\|h\|_{p}=\|f\|_{p}$ for each $p \in[0, \infty]$.
Lemma 17. Let $f \in H^{p}$.

- If $p \geq 1$, then $M_{\infty}(f, r) \leq \frac{1}{1-r}\|f\|_{1} \leq \frac{1}{1-r}\|f\|_{p}$ for $r \in(0,1)$.
- If $p \in(0,1)$, then $M_{\infty}(f, r) \leq \frac{3}{(1-r)^{1+\frac{1}{p}}}\|f\|_{p}$ for $r \in(0,1)$.

Theorem 18.

- $\left(H^{p},\|\cdot\|_{p}\right)$ is a Banach space for any $p \in[1, \infty]$.
- If $p \in(0,1)$, then H^{p} is a complete metric linear space with the metric defined by the formula $\rho_{p}(f, g)=\|f-g\|_{p}^{p}$.

Theorem 19. Let $f \in H(\mathbb{D})$ satisfy

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{D} .
$$

Then

$$
\|f\|_{2}^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} .
$$

If moreover $f \in H^{2}$, then the following assertions hold:
(1) The limit $f^{*}\left(e^{i t}\right)=\lim _{r \rightarrow 1-} f\left(r e^{i t}\right)$ exists for almost all $t \in[0,2 \pi)$.
(2) $f^{*} \in L^{2}(\mathbb{T})$
(3) For $n \in \mathbb{Z}$ define $\varphi_{n}\left(e^{i t}\right)=e^{i n t}, t \in[-\pi, \pi)$. Then $\left(\varphi_{n}\right)_{n \in \mathbb{Z}}$ is an orthonormal basis of $L^{2}(\mathbb{T})$ and the expansion of f^{*} with respect to this basis is

$$
f^{*}=\sum_{n=0}^{\infty} a_{n} \varphi_{n} .
$$

(4) $\lim _{r \rightarrow 1-} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f^{*}\left(e^{i t}\right)-f\left(r e^{i t}\right)\right|^{2} \mathrm{~d} t=0$.
(5) $f=P\left[f^{*}\right]$
(6) Let γ be the positively oriented unit circle. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{*}(w)}{w-z} \mathrm{~d} w, \quad z \in \mathbb{D} .
$$

Corollary. $\quad H^{2}$ is a Hilbert space and the mapping $f \mapsto f^{*}$ is a linear isometry of H^{2} onto the closed linear subspace of $L^{2}(\mathbb{T})$ generated by the functions $\varphi_{n}, n \geq 0$. (This subspace is formed by those $g \in L^{2}(\mathbb{T})$, whose coeficients at $\varphi_{n}, n<0$, in the expansion with respect to the orthonormal basis $\varphi_{n}, n \in \mathbb{Z}$ vanish, i.e., by those g which satisfy $\hat{g}(n)=0$ for $n<0$.)
Theorem 20. Let $p \in[1, \infty]$ and $f \in H^{p}$. Then the limit $f^{*}\left(e^{i t}\right)=\lim _{r \rightarrow 1-} f\left(r e^{i t}\right)$ exists for almost all $t \in[0,2 \pi)$ and, moreover, the following assertions hold.
(1) $f^{*} \in L^{p}(\mathbb{T})$
(2) $\left\|f^{*}\right\|_{p}=\|f\|_{p}$
(3) $f=P\left[f^{*}\right]$
(4) Let γ be the positively oriented unit circle. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{*}(w)}{w-z} \mathrm{~d} w, \quad z \in \mathbb{D} .
$$

(5) If $p<\infty$, then $\lim _{r \rightarrow 1-} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f^{*}\left(e^{i t}\right)-f\left(r e^{i t}\right)\right|^{p} \mathrm{~d} t=0$.

Theorem 21. Let $f \in H(\mathbb{D})$ and $p \in[1, \infty]$. Then $f \in H^{p}$ if and only if there exists $g \in L^{p}(\mathbb{T})$ such that $\hat{g}(n)=0$ for $n<0$ and $f=P[g]$.

